主页 > 快速排名 > 常见问题 > 如何设计一个简单的新闻聚合产品?

如何设计一个简单的新闻聚合产品?

POST TIME:2018-12-03 21:29

 

如何设计一个简单的新闻聚合产品?文章介绍了制作极简的新闻聚合产品的7步骤,好奇的你和我一起来看看。

你知道在三四线的县城,用户在哪里看新闻么?不是在今日头条里,而是在微信中的阿谁腾讯新闻里。这是我在安徽青阳做用户调研时绝大多数给我的回答。这或许说明一点:用户没有像设计师那样的洁癖,期望每一个app都有明确的界限。谁说不能在一个社交app里看新闻,我还要加一句,谁说不能在当地头条(我正在负责的产品)里看全国头条。说是这么说了,但是心里清楚这只是产品的外延,既然是外延就应该追求做产品的性价比,所以才有了这个极简的新闻聚合产品。

先定个产品的小目标:通过全技术的方式,给用户提供一个高频更新的新闻列表,运营可进行微调干预。

整个过程7步完成,对,就是七步成诗那七步。

1.构建标签库

标签库其实就是词条库,词条哪里来?或者换一个问法,互联网上谁最懂中文?答案当然是百度咯。跑到百度百科首页一看,我们要的东西就躺不才面的红框里。

那我们还客气啥,,爬呀,等等,1400万是不是有点太多了?那我们就去掉一点吧,只留下名词好了,这样可以把词库控制在百万量级。

2.抓取新闻

接下来,就是抓新闻,新闻哪里有,找门户网站呗,公众号app就算了,费时费力,爬PC站不是一样的嘛,以体育为例,我们可以挑选新浪体育,搜狐体育,凤凰体育,还有什么体育?你也看出来了其实我对体育无感,这里就假设有10个体育专题网站吧。

我们要抓的是热门新闻,啥叫热门,出现在第一屏的就是热门,所以我们抓取的时候,只抓取首屏新闻。结果就是我有了一堆标题和链接,还有链接后面的正文。

3.建立新闻和标签的关联

现在到了建立新闻和标签关联的时候了,首先当然是要分词,怎么分?呃,这个好像有很多自然语言词库的吧,你本身去找吧,分词完了之后,计算各个词的出现频率,出现频率越高说明它越可能是这篇文章的关键词。出现在标题里的词是不是比出现在正文里的词更重要呢?所以你可以把标题里的词加个N倍权重,N等于几?关注我私信我就告诉你。

这里分出来的词,其实就是标签库里的标签。这样每一篇文章就有一个对应的词频由高到低的标签列表了,太长了也没用,就取TOP5吧。

这里有个问题留给你,既然文章要分词,文章分出来的词直接做词库不就好了,为啥要去百度爬呢?答案还是要关注我私信我才告诉你。

4.标签热度排序

现在我们为体育频道选择了10个数据源(就是新浪体育这样的网站),每个数据源下抓了50篇文章,每篇文章都有5个标签,现在我们要看哪个标签最热了。我们的方式简单得很,不然怎么说我们设计了一个极(jian)简(lou)的产品呢,方法是如果一个标签在一个数据源出现了,就加1,在10个数据源都出现了那就是10。通过这种方式你会得到每一个标签的值,这个值除以数据源总数就是“热度值”,在我们这里就是0.1到1之间的分布。

这个时候运营的妹子来乱入了,她说她的特长就是八卦,并且是先人一步的八卦,让我们千万要相信她判断热点的是否会大热的能力。这句话的意思是:她想来人肉预先提升一个标签的热度值,虽然现在它还没有大热。嗯,平常关系辣么好,我不信也得做个姿势选择相信,于是就有了下面的线框。她可以调整一个标签次的热度值。

呀,最后怎么还有两个词连接在一起的?实际上多个词比单个词更接近于一个热点事件。当然对于这种二元词,计算方式和一元词略有差别,细节此处不展开。

5.文章按频道排好序

到这里我们已经有了标签的热度排序,那文章的热度怎么算呢?文章不是有5个标签嘛,阿谁最高热度值标签的热度就是文章的热度。

实际上热度只是文章的一个维度,要给文章排序,你自然还会想到以下的几个维度:

质量分:一篇结构完整、图片丰富的文章显然具有更高的质量时效分:越新的越优先,大家是来看新闻的嘛。

具体算法上可以用高斯衰减,好比72小时内基本无衰减,超过72小时后每过12小时就衰减一点。说到衰减,比来看了采铜的效益半衰期理论感觉颇为受用,大意是:一个人办理本身日常的行为,可以考虑这个行为对本身长期受用程度来衡量,有些事情效益半衰期很长好比读书和健身,就应该多做,别的一些事情效益半衰期很短好比游戏,就可以少做。

扯一扯防松一下,接回来说。

标签:盐城 林芝 东营 九江 乌鲁木齐



收缩
  • 微信客服
  • 微信二维码
  • 电话咨询

  • 400-1100-266