主页 > 知识库 > 基于PHP实现的多元线性回归模拟曲线算法

基于PHP实现的多元线性回归模拟曲线算法

热门标签:400电话申请方法收费 电话机器人危险吗 400电话办理福州市 江苏外呼电销机器人报价 离石地图标注 深圳外呼系统收费 南宁高频外呼回拨系统哪家好 专业电话机器人批发商 长沙crm外呼系统业务

本文实例讲述了基于PHP实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下:

多元线性回归模型: y = b1x1 + b2x2 + b3x3 +...... +bnxn;

我们根据一组数据: 类似 arr_x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]; arr_y = [5, 10, 15]; 我们最后要求出的是一个数组,包含了从b1 到bn;

方法:利用最小二乘法

公式:我们只用公式的前半部分,也就是用矩阵来计算

式中的X就是arr_x,二维数组我们可以把它看成是一个矩阵,式中的y就是arr_y,也把它看成一个矩阵(5, 10, 15) ,不过应该是竖着写的。

然后可以根据公式我们会发现要用到矩阵的相乘,转置,求逆;所以下面的代码一一给出:

public function get_complement($data, $i, $j) {
  /* x和y为矩阵data的行数和列数 */
  $x = count($data);
  $y = count($data[0]);
  /* data2为所求剩余矩阵 */
  $data2 =[];
  for ($k = 0; $k  $x -1; $k++) {
    if ($k  $i) {
      for ($kk = 0; $kk  $y -1; $kk++) {
        if ($kk  $j) {
          $data2[$k][$kk] = $data[$k][$kk];
        } else {
          $data2[$k][$kk] = $data[$k][$kk +1];
        }
      }
    } else {
      for ($kk = 0; $kk  $y -1; $kk++) {
        if ($kk  $j) {
          $data2[$k][$kk] = $data[$k +1][$kk];
        } else {
          $data2[$k][$kk] = $data[$k +1][$kk +1];
        }
      }
    }
  }
  return $data2;
}
/* 计算矩阵行列式 */
public function cal_det($data) {
  $ans = 0;
  if (count($data[0]) === 2) {
    $ans = $data[0][0] * $data[1][1] - $data[0][1] * $data[1][0];
  } else {
    for ($i = 0; $i  count($data[0]); $i++) {
      $data_temp = $this->get_complement($data, 0, $i);
      if ($i % 2 === 0) {
        $ans = $ans + $data[0][$i] * ($this->cal_det($data_temp));
      } else {
        $ans = $ans - $data[0][$i] * ($this->cal_det($data_temp));
      }
    }
  }
  return $ans;
}
/*计算矩阵的伴随矩阵*/
public function ajoint($data) {
  $m = count($data);
  $n = count($data[0]);
  $data2 =[];
  for ($i = 0; $i  $m; $i++) {
    for ($j = 0; $j  $n; $j++) {
      if (($i + $j) % 2 === 0) {
        $data2[$i][$j] = $this->cal_det($this->get_complement($data, $i, $j));
      } else {
        $data2[$i][$j] = - $this->cal_det($this->get_complement($data, $i, $j));
      }
    }
  }
  return $this->trans($data2);
}
/*转置矩阵*/
public function trans($data) {
  $i = count($data);
  $j = count($data[0]);
  $data2 =[];
  for ($k2 = 0; $k2  $j; $k2++) {
    for ($k1 = 0; $k1  $i; $k1++) {
      $data2[$k2][$k1] = $data[$k1][$k2];
    }
  }
  /*将矩阵转置便可得到伴随矩阵*/
  return $data2;
}
/*求矩阵的逆,输入参数为原矩阵*/
public function inv($data) {
  $m = count($data);
  $n = count($data[0]);
  $data2 =[];
  $det_val = $this->cal_det($data);
  $data2 = $this->ajoint($data);
  for ($i = 0; $i  $m; $i++) {
    for ($j = 0; $j  $n; $j++) {
      $data2[$i][$j] = $data2[$i][$j] / $det_val;
    }
  }
  return $data2;
}
/*求两矩阵的乘积*/
public function getProduct($data1, $data2) {
  /*$data1 为左乘矩阵*/
  $m1 = count($data1);
  $n1 = count($data1[0]);
  $m2 = count($data2);
  $n2 = count($data2[0]);
  $data_new =[];
  if ($n1 !== $m2) {
    return false;
  } else {
    for ($i = 0; $i = $m1 -1; $i++) {
      for ($k = 0; $k = $n2 -1; $k++) {
        $data_new[$i][$k] = 0;
        for ($j = 0; $j = $n1 -1; $j++) {
          $data_new[$i][$k] += $data1[$i][$j] * $data2[$j][$k];
        }
      }
    }
  }
  return $data_new;
}
/*多元线性方程*/
public function getParams($arr_x, $arr_y) {
  $final =[];
  $arr_x_t = $this->trans($arr_x);
  $result = $this->getProduct($this->getProduct($this->inv($this->getProduct($arr_x_t, $arr_x)), $arr_x_t), $arr_y);
  foreach ($result as $key => $val) {
    foreach ($val as $_k => $_v) {
      $final[] = $_v;
    }
  }
  return $final;
}

最后的getParams()方法就是最后求b参数数组的方法,传入一个二维数组arr_x, 和一个一维数组arr_y就可以了。

这一般用于大数据分析,根据大数据来模拟和预测下面的发展和走势。

PS:这里为大家推荐两款相关模拟曲线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun

在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《php程序设计算法总结》、《php字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结》

希望本文所述对大家PHP程序设计有所帮助。

您可能感兴趣的文章:
  • php 大数据量及海量数据处理算法总结
  • php中最简单的字符串匹配算法
  • PHP经典算法集锦【经典收藏】
  • 关于PHP递归算法和应用方法介绍
  • PHP面试常用算法(推荐)
  • php经典算法集锦
  • PHP常用算法和数据结构示例(必看篇)
  • php使用高斯算法实现图片的模糊处理功能示例
  • php实现的常见排序算法汇总
  • PHP实现深度优先搜索算法(DFS,Depth First Search)详解
  • PHP实现广度优先搜索算法(BFS,Broad First Search)详解

标签:滨州 白酒营销 株洲 太原 兴安盟 曲靖 南昌 南京

巨人网络通讯声明:本文标题《基于PHP实现的多元线性回归模拟曲线算法》,本文关键词  基于,PHP,实现,的,多元,线性,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《基于PHP实现的多元线性回归模拟曲线算法》相关的同类信息!
  • 本页收集关于基于PHP实现的多元线性回归模拟曲线算法的相关信息资讯供网民参考!
  • 推荐文章