主页 > 知识库 > 算法系列15天速成 第五天 五大经典查找【中】

算法系列15天速成 第五天 五大经典查找【中】

热门标签:医院地图标注 语音平台系统 湖北稳定外呼系统 嘟声的电销机器人 洛阳便宜外呼系统厂家 忻州外呼系统接口对接 沧州智能外呼系统收费 地图标注和图片标注 电销机器人怎么收费
哈希查找:

    对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成
固有思维了。大家一定要知道“哈希“中的对应关系。
     比如说: ”5“是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个”2",那么此时的”5“
和“2”就建立一种对应关系,这种关系就是所谓的“哈希关系”,在实际应用中也就形成了”2“是key,”5“是value。
    那么有的朋友就会问如何做哈希,首先做哈希必须要遵守两点原则:
          ①:  key尽可能的分散,也就是我丢一个“6”和“5”给你,你都返回一个“2”,那么这样的哈希函数不尽完美。
          ②: 哈希函数尽可能的简单,也就是说丢一个“6”给你,你哈希函数要搞1小时才能给我,这样也是不好的。

其实常用的做哈希的手法有“五种”:
第一种:”直接定址法“。
                  很容易理解,key=Value+C; 这个“C"是常量。Value+C其实就是一个简单的哈希函数。
第二种:“除法取余法”。
                  很容易理解, key=value%C;解释同上。
第三种:“数字分析法”。
                  这种蛮有意思,比如有一组value1=112233,value2=112633,value3=119033,
                  针对这样的数我们分析数中间两个数比较波动,其他数不变。那么我们取key的值就可以是
                  key1=22,key2=26,key3=90。
第四种:“平方取中法”。此处忽略,见名识意。
第五种:“折叠法”。
                 这种蛮有意思,比如value=135790,要求key是2位数的散列值。那么我们将value变为13+57+90=160,
                 然后去掉高位“1”,此时key=60,哈哈,这就是他们的哈希关系,这样做的目的就是key与每一位value都相
                 关,来做到“散列地址”尽可能分散的目地。

正所谓常在河边走,哪有不湿鞋。哈希也一样,你哈希函数设计的再好,搞不好哪一次就撞楼了,那么抛给我们的问题
就是如果来解决“散列地址“的冲突。

其实解决冲突常用的手法也就2种:

第一种: “开放地址法“。
                 所谓”开放地址“,其实就是数组中未使用的地址。也就是说,在发生冲突的地方,后到的那个元素(可采用两种方式
                 :①线性探测,②函数探测)向数组后寻找"开放地址“然后把自己插进入。

第二种:”链接法“。
                这个大家暂时不懂也没关系,我就先介绍一下原理,就是在每个元素上放一个”指针域“,在发生冲突的地方,后到的那
               个元素将自己的数据域抛给冲突中的元素,此时冲突的地方就形成了一个链表。

上面啰嗦了那么多,也就是想让大家在”设计哈希“和”解决冲突“这两个方面提一点参考和手段。

那么下面就上代码了,
     设计函数采用:”除法取余法“。
     冲突方面采用:”开放地址线性探测法"。

复制代码 代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HashSearch
{
    class Program
    {
        //“除法取余法”
        static int hashLength = 13;

        //原数据
        static Listint> list = new Listint>() { 13, 29, 27, 28, 26, 30, 38 };

        //哈希表长度
        static int[] hash = new int[hashLength];

        static void Main(string[] args)
        {
            //创建hash
            for (int i = 0; i list.Count; i++)
            {
                InsertHash(hash, hashLength, list[i]);
            }

            Console.WriteLine("Hash数据:" + string.Join(",", hash));

            while (true)
            {
                Console.WriteLine("\n请输入要查找数字:");
                int result = int.Parse(Console.ReadLine());
                var index = SearchHash(hash, hashLength, result);

                if (index != -1)
                    Console.WriteLine("数字" + result + "在索引的位置是:" + index);
                else
                    Console.WriteLine("呜呜," + result + " 在hash中没有找到!");

            }
        }

        ///summary>
/// Hash表检索数据
////summary>
///param name="dic">/param>
///param name="hashLength">/param>
///param name="key">/param>
///returns>/returns>
        static int SearchHash(int[] hash, int hashLength, int key)
        {
            //哈希函数
            int hashAddress = key % hashLength;

            //指定hashAdrress对应值存在但不是关键值,则用开放寻址法解决
            while (hash[hashAddress] != 0 hash[hashAddress] != key)
            {
                hashAddress = (++hashAddress) % hashLength;
            }

            //查找到了开放单元,表示查找失败
            if (hash[hashAddress] == 0)
                return -1;
            return hashAddress;

        }

        ///summary>
///数据插入Hash表
////summary>
///param name="dic">哈希表/param>
///param name="hashLength">/param>
///param name="data">/param>
        static void InsertHash(int[] hash, int hashLength, int data)
        {
            //哈希函数
            int hashAddress = data % 13;

            //如果key存在,则说明已经被别人占用,此时必须解决冲突
            while (hash[hashAddress] != 0)
            {
                //用开放寻址法找到
                hashAddress = (++hashAddress) % hashLength;
            }

            //将data存入字典中
            hash[hashAddress] = data;
        }
    }
}

结果:

索引查找:
     一提到“索引”,估计大家第一反应就是“数据库索引”,对的,其实主键建立“索引”,就是方便我们在海量数据中查找。
关于“索引”的知识,估计大家都比我清楚,我就简单介绍下。
我们自己写算法来实现索引查找时常使用的三个术语:
第一:主表,      这个很简单,要查找的对象。
第二:索引项,   一般我们会用函数将一个主表划分成几个子表,每个子表建立一个索引,这个索引叫做索引项。
第三:索引表,    索引项的集合也就是索引表。

一般“索引项”包含三种内容:index,start,length

第一: index,也就是索引指向主表的关键字。
第二:start, 也就是index在主表中的位置。
第三:length, 也就是子表的区间长度。

复制代码 代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace IndexSearchProgram
{
    class Program
    {
        ///summary>
/// 索引项实体
////summary>
        class IndexItem
        {
            //对应主表的值
            public int index;
            //主表记录区间段的开始位置
            public int start;
            //主表记录区间段的长度
            public int length;
        }

        static void Main(string[] args)
        {
            Console.WriteLine("原数据为:" + string.Join(",", students));


            int value = 205;

            Console.WriteLine("\n插入数据" + value);

            //将205插入集合中,过索引
            var index = insert(value);

            //如果插入成功,获取205元素所在的位置
            if (index == 1)
            {
                Console.WriteLine("\n插入后数据:" + string.Join(",", students));
                Console.WriteLine("\n数据元素:205在数组中的位置为 " + indexSearch(205) + "位");
            }

            Console.ReadLine();
        }

        ///summary>
/// 学生主表
////summary>
        static int[] students = {
                                   101,102,103,104,105,0,0,0,0,0,
                                   201,202,203,204,0,0,0,0,0,0,
                                   301,302,303,0,0,0,0,0,0,0
                                };
        ///summary>
///学生索引表
////summary>
        static IndexItem[] indexItem = {
                                  new IndexItem(){ index=1, start=0, length=5},
                                  new IndexItem(){ index=2, start=10, length=4},
                                  new IndexItem(){ index=3, start=20, length=3},
                                };

        ///summary>
/// 查找数据
////summary>
///param name="key">/param>
///returns>/returns>
        public static int indexSearch(int key)
        {
            IndexItem item = null;

            // 建立索引规则
            var index = key / 100;

            //首先去索引找
            for (int i = 0; i indexItem.Count(); i++)
            {
                if (indexItem[i].index == index)
                {
                    item = new IndexItem() { start = indexItem[i].start, length = indexItem[i].length };
                    break;
                }
            }

            //如果item为null,则说明在索引中查找失败
            if (item == null)
                return -1;

            for (int i = item.start; i item.start + item.length; i++)
            {
                if (students[i] == key)
                {
                    return i;
                }
            }
            return -1;
        }

        ///summary>
/// 插入数据
////summary>
///param name="key">/param>
///returns>/returns>
        public static int insert(int key)
        {
            IndexItem item = null;
            //建立索引规则
            var index = key / 100;
            int i = 0;
            for (i = 0; i indexItem.Count(); i++)
            {
                //获取到了索引
                if (indexItem[i].index == index)
                {
                    item = new IndexItem()
                    {
                        start = indexItem[i].start,
                        length = indexItem[i].length
                    };
                    break;
                }
            }
            if (item == null)
                return -1;
            //更新主表
            students[item.start + item.length] = key;
            //更新索引表
            indexItem[i].length++;
            return 1;
        }
    }
}

结果:

ps: 哈希查找时间复杂度O(1)。

       索引查找时间复杂度:就拿上面的Demo来说是等于O(n/3)+O(length)

您可能感兴趣的文章:
  • 算法系列15天速成 第十四天 图【上】
  • 算法系列15天速成——第十三天 树操作【下】
  • 算法系列15天速成 第十二天 树操作【中】
  • 算法系列15天速成 第十一天 树操作(上)
  • 算法系列15天速成 第十天 栈
  • 算法系列15天速成 第八天 线性表【下】
  • 算法系列15天速成 第九天 队列
  • 算法系列15天速成 第七天 线性表【上】
  • 算法系列15天速成 第六天 五大经典查找【下】
  • 算法系列15天速成 第四天 五大经典查找【上】
  • 算法系列15天速成 第三天 七大经典排序【下】
  • 算法系列15天速成 第二天 七大经典排序【中】
  • 算法系列15天速成 第一天 七大经典排序【上】
  • 算法系列15天速成——第十五天 图【下】(大结局)

标签:日照 山南 防城港 内蒙古 巴彦淖尔 定州 96 宜宾

巨人网络通讯声明:本文标题《算法系列15天速成 第五天 五大经典查找【中】》,本文关键词  算法,系列,15天,速成,第五,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《算法系列15天速成 第五天 五大经典查找【中】》相关的同类信息!
  • 本页收集关于算法系列15天速成 第五天 五大经典查找【中】的相关信息资讯供网民参考!
  • 推荐文章