这篇博客将介绍如何使用OpenCV应用按位AND、OR、XOR和NOT。上一篇学习了如何从图像中裁剪和提取感兴趣的区域(ROI),截取的都是矩形。但是如果想裁剪一个非矩形区域呢?该怎么办?
# 对示例图像应用AND、OR、XOR和NOT运算符。
# USAGE
# python opencv_bitwise.py
# 导入必要的包
import numpy as np
import cv2
# 绘制一个矩形
rectangle = np.zeros((300, 300), dtype="uint8")
cv2.rectangle(rectangle, (25, 25), (275, 275), 255, -1)
cv2.imshow("Rectangle", rectangle)
# 绘制一个圆
circle = np.zeros((300, 300), dtype = "uint8")
cv2.circle(circle, (150, 150), 150, 255, -1)
cv2.imshow("Circle", circle)
# 'AND'操作——当输入都是>0的像素时,则得到开操作像素为255白色,否则被设置为关闭,像素为0黑色
# 当且仅当两个像素都大于零时,按位AND为真。
bitwiseAnd = cv2.bitwise_and(rectangle, circle)
cv2.imshow("AND", bitwiseAnd)
cv2.waitKey(0)
# ‘OR'操作得到矩形和圆形的并集,只要有一个>0,就得到255白色,否则为0
# 如果两个像素中的任何一个大于零,则按位“或”为真。
bitwiseOr = cv2.bitwise_or(rectangle, circle)
cv2.imshow("OR", bitwiseOr)
cv2.waitKey(0)
# ‘XOR'是OR的补集,仅当俩个像素有一个>0时,为白色255
bitwiseXor = cv2.bitwise_xor(rectangle, circle)
cv2.imshow("XOR", bitwiseXor)
cv2.waitKey(0)
# ‘NOT'操作:0变成255,255变成0
bitwiseNot = cv2.bitwise_not(circle)
cv2.imshow("NOT", bitwiseNot)
cv2.waitKey(0)
到此这篇关于超详细注释之OpenCV按位AND OR XOR和NOT的文章就介绍到这了,更多相关OpenCV按位AND OR XOR NOT内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!