主页 > 知识库 > PyTorch一小时掌握之神经网络气温预测篇

PyTorch一小时掌握之神经网络气温预测篇

热门标签:郑州智能外呼系统运营商 电话机器人适用业务 获客智能电销机器人 佛山防封外呼系统收费 南昌办理400电话怎么安装 徐州天音防封电销卡 湛江电销防封卡 不错的400电话办理 哈尔滨外呼系统代理商

概述

具体的案例描述在此就不多赘述. 同一数据集我们在机器学习里的随机森林模型中已经讨论过.

导包

import numpy as np
import pandas as pd
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
from sklearn.preprocessing import StandardScaler
import torch

数据读取

# ------------------1. 数据读取------------------

# 读取数据
data = pd.read_csv("temps.csv")

# 看看数据长什么样子
print(data.head())

# 查看数据维度
print("数据维度:", data.shape)

# 产看数据类型
print("数据类型:", type(data))

输出结果:
year month day week temp_2 temp_1 average actual friend
0 2016 1 1 Fri 45 45 45.6 45 29
1 2016 1 2 Sat 44 45 45.7 44 61
2 2016 1 3 Sun 45 44 45.8 41 56
3 2016 1 4 Mon 44 41 45.9 40 53
4 2016 1 5 Tues 41 40 46.0 44 41
数据维度: (348, 9)
数据类型: class 'pandas.core.frame.DataFrame'>

数据预处理

# ------------------2. 数据预处理------------------

# datetime 格式
dates = pd.PeriodIndex(year=data["year"], month=data["month"], day=data["day"], freq="D").astype(str)
dates = [datetime.datetime.strptime(date, "%Y-%m-%d") for date in dates]
print(dates[:5])

# 编码转换
data = pd.get_dummies(data)
print(data.head())

# 画图
plt.style.use("fivethirtyeight")
register_matplotlib_converters()

# 标签
labels = np.array(data["actual"])

# 取消标签
data = data.drop(["actual"], axis= 1)
print(data.head())

# 保存一下列名
feature_list = list(data.columns)

# 格式转换
data_new = np.array(data)

data_new  = StandardScaler().fit_transform(data_new)
print(data_new[:5])

输出结果:
[datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2016, 1, 2, 0, 0), datetime.datetime(2016, 1, 3, 0, 0), datetime.datetime(2016, 1, 4, 0, 0), datetime.datetime(2016, 1, 5, 0, 0)]
year month day temp_2 ... week_Sun week_Thurs week_Tues week_Wed
0 2016 1 1 45 ... 0 0 0 0
1 2016 1 2 44 ... 0 0 0 0
2 2016 1 3 45 ... 1 0 0 0
3 2016 1 4 44 ... 0 0 0 0
4 2016 1 5 41 ... 0 0 1 0

[5 rows x 15 columns]
year month day temp_2 ... week_Sun week_Thurs week_Tues week_Wed
0 2016 1 1 45 ... 0 0 0 0
1 2016 1 2 44 ... 0 0 0 0
2 2016 1 3 45 ... 1 0 0 0
3 2016 1 4 44 ... 0 0 0 0
4 2016 1 5 41 ... 0 0 1 0

[5 rows x 14 columns]
[[ 0. -1.5678393 -1.65682171 -1.48452388 -1.49443549 -1.3470703
-1.98891668 2.44131112 -0.40482045 -0.40961596 -0.40482045 -0.40482045
-0.41913682 -0.40482045]
[ 0. -1.5678393 -1.54267126 -1.56929813 -1.49443549 -1.33755752
0.06187741 -0.40961596 -0.40482045 2.44131112 -0.40482045 -0.40482045
-0.41913682 -0.40482045]
[ 0. -1.5678393 -1.4285208 -1.48452388 -1.57953835 -1.32804474
-0.25855917 -0.40961596 -0.40482045 -0.40961596 2.47023092 -0.40482045
-0.41913682 -0.40482045]
[ 0. -1.5678393 -1.31437034 -1.56929813 -1.83484692 -1.31853195
-0.45082111 -0.40961596 2.47023092 -0.40961596 -0.40482045 -0.40482045
-0.41913682 -0.40482045]
[ 0. -1.5678393 -1.20021989 -1.8236209 -1.91994977 -1.30901917
-1.2198689 -0.40961596 -0.40482045 -0.40961596 -0.40482045 -0.40482045
2.38585576 -0.40482045]]

构建网络模型

# ------------------3. 构建网络模型------------------

x = torch.tensor(data_new)
y = torch.tensor(labels)

# 权重参数初始化
weights1 = torch.randn((14,128), dtype=float, requires_grad= True)
biases1 = torch.randn(128, dtype=float, requires_grad= True)
weights2 = torch.randn((128,1), dtype=float, requires_grad= True)
biases2 = torch.randn(1, dtype=float, requires_grad= True)

learning_rate = 0.001
losses = []

for i in range(1000):
    # 计算隐层
    hidden = x.mm(weights1) + biases1
    # 加入激活函数
    hidden = torch.relu(hidden)
    # 预测结果
    predictions = hidden.mm(weights2) + biases2
    # 计算损失
    loss = torch.mean((predictions - y) ** 2)

    # 打印损失值
    if i % 100 == 0:
        print("loss:", loss)
    # 反向传播计算
    loss.backward()

    # 更新参数
    weights1.data.add_(-learning_rate * weights1.grad.data)
    biases1.data.add_(-learning_rate * biases1.grad.data)
    weights2.data.add_(-learning_rate * weights2.grad.data)
    biases2.data.add_(-learning_rate * biases2.grad.data)

    # 每次迭代清空
    weights1.grad.data.zero_()
    biases1.grad.data.zero_()
    weights2.grad.data.zero_()
    biases2.grad.data.zero_()

输出结果:
loss: tensor(4746.8598, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(156.5691, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(148.9419, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(146.1035, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(144.5652, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(143.5376, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(142.7823, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(142.2151, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(141.7770, dtype=torch.float64, grad_fn=MeanBackward0>)
loss: tensor(141.4294, dtype=torch.float64, grad_fn=MeanBackward0>)

数据可视化

# ------------------4. 数据可视化------------------

def graph1():
    # 创建子图
    f, ax = plt.subplots(2, 2, figsize=(10, 10))

    # 标签值
    ax[0, 0].plot(dates, labels, color="#ADD8E6")
    ax[0, 0].set_xticks([""])
    ax[0, 0].set_ylabel("Temperature")
    ax[0, 0].set_title("Max Temp")

    # 昨天
    ax[0, 1].plot(dates, data["temp_1"], color="#87CEFA")
    ax[0, 1].set_xticks([""])
    ax[0, 1].set_ylabel("Temperature")
    ax[0, 1].set_title("Previous Max Temp")

    # 前天
    ax[1, 0].plot(dates, data["temp_2"], color="#00BFFF")
    ax[1, 0].set_xticks([""])
    ax[1, 0].set_xlabel("Date")
    ax[1, 0].set_ylabel("Temperature")
    ax[1, 0].set_title("Two Days Prior Max Temp")

    # 朋友
    ax[1, 1].plot(dates, data["friend"], color="#1E90FF")
    ax[1, 1].set_xticks([""])
    ax[1, 1].set_xlabel("Date")
    ax[1, 1].set_ylabel("Temperature")
    ax[1, 1].set_title("Friend Estimate")

    plt.show()

输出结果:

完整代码

import numpy as np
import pandas as pd
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
from sklearn.preprocessing import StandardScaler
import torch


# ------------------1. 数据读取------------------

# 读取数据
data = pd.read_csv("temps.csv")

# 看看数据长什么样子
print(data.head())

# 查看数据维度
print("数据维度:", data.shape)

# 产看数据类型
print("数据类型:", type(data))

# ------------------2. 数据预处理------------------

# datetime 格式
dates = pd.PeriodIndex(year=data["year"], month=data["month"], day=data["day"], freq="D").astype(str)
dates = [datetime.datetime.strptime(date, "%Y-%m-%d") for date in dates]
print(dates[:5])

# 编码转换
data = pd.get_dummies(data)
print(data.head())

# 画图
plt.style.use("fivethirtyeight")
register_matplotlib_converters()

# 标签
labels = np.array(data["actual"])

# 取消标签
data = data.drop(["actual"], axis= 1)
print(data.head())

# 保存一下列名
feature_list = list(data.columns)

# 格式转换
data_new = np.array(data)

data_new  = StandardScaler().fit_transform(data_new)
print(data_new[:5])

# ------------------3. 构建网络模型------------------

x = torch.tensor(data_new)
y = torch.tensor(labels)

# 权重参数初始化
weights1 = torch.randn((14,128), dtype=float, requires_grad= True)
biases1 = torch.randn(128, dtype=float, requires_grad= True)
weights2 = torch.randn((128,1), dtype=float, requires_grad= True)
biases2 = torch.randn(1, dtype=float, requires_grad= True)

learning_rate = 0.001
losses = []

for i in range(1000):
    # 计算隐层
    hidden = x.mm(weights1) + biases1
    # 加入激活函数
    hidden = torch.relu(hidden)
    # 预测结果
    predictions = hidden.mm(weights2) + biases2
    # 计算损失
    loss = torch.mean((predictions - y) ** 2)

    # 打印损失值
    if i % 100 == 0:
        print("loss:", loss)
    # 反向传播计算
    loss.backward()

    # 更新参数
    weights1.data.add_(-learning_rate * weights1.grad.data)
    biases1.data.add_(-learning_rate * biases1.grad.data)
    weights2.data.add_(-learning_rate * weights2.grad.data)
    biases2.data.add_(-learning_rate * biases2.grad.data)

    # 每次迭代清空
    weights1.grad.data.zero_()
    biases1.grad.data.zero_()
    weights2.grad.data.zero_()
    biases2.grad.data.zero_()

# ------------------4. 数据可视化------------------

def graph1():
    # 创建子图
    f, ax = plt.subplots(2, 2, figsize=(10, 10))

    # 标签值
    ax[0, 0].plot(dates, labels, color="#ADD8E6")
    ax[0, 0].set_xticks([""])
    ax[0, 0].set_ylabel("Temperature")
    ax[0, 0].set_title("Max Temp")

    # 昨天
    ax[0, 1].plot(dates, data["temp_1"], color="#87CEFA")
    ax[0, 1].set_xticks([""])
    ax[0, 1].set_ylabel("Temperature")
    ax[0, 1].set_title("Previous Max Temp")

    # 前天
    ax[1, 0].plot(dates, data["temp_2"], color="#00BFFF")
    ax[1, 0].set_xticks([""])
    ax[1, 0].set_xlabel("Date")
    ax[1, 0].set_ylabel("Temperature")
    ax[1, 0].set_title("Two Days Prior Max Temp")

    # 朋友
    ax[1, 1].plot(dates, data["friend"], color="#1E90FF")
    ax[1, 1].set_xticks([""])
    ax[1, 1].set_xlabel("Date")
    ax[1, 1].set_ylabel("Temperature")
    ax[1, 1].set_title("Friend Estimate")

    plt.show()


if __name__ == "__main__":
    graph1()

到此这篇关于PyTorch一小时掌握之神经网络气温预测篇的文章就介绍到这了,更多相关PyTorch 神经网络气温预测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • PyTorch一小时掌握之autograd机制篇
  • PyTorch一小时掌握之神经网络分类篇
  • PyTorch一小时掌握之图像识别实战篇
  • PyTorch一小时掌握之基本操作篇

标签:绍兴 吉安 安康 广西 兰州 怀化 芜湖 吕梁

巨人网络通讯声明:本文标题《PyTorch一小时掌握之神经网络气温预测篇》,本文关键词  PyTorch,一小时,掌握,之,神经网络,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《PyTorch一小时掌握之神经网络气温预测篇》相关的同类信息!
  • 本页收集关于PyTorch一小时掌握之神经网络气温预测篇的相关信息资讯供网民参考!
  • 推荐文章