主页 > 知识库 > 基于python+opencv调用电脑摄像头实现实时人脸眼睛以及微笑识别

基于python+opencv调用电脑摄像头实现实时人脸眼睛以及微笑识别

热门标签:服务器配置 智能手机 美图手机 银行业务 呼叫中心市场需求 铁路电话系统 检查注册表项 网站文章发布

本文教大家调用电脑摄像头进行实时人脸+眼睛识别+微笑识别,供大家参考,具体内容如下

一、调用电脑摄像头进行实时人脸+眼睛识别

# 调用电脑摄像头进行实时人脸+眼睛识别,可直接复制粘贴运行
import cv2

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml')

eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_eye.xml')
# 调用摄像头摄像头
cap = cv2.VideoCapture(0)

while(True):
    # 获取摄像头拍摄到的画面
    ret, frame = cap.read()
    faces = face_cascade.detectMultiScale(frame, 1.3, 5)
    img = frame
    for (x,y,w,h) in faces:
     # 画出人脸框,蓝色,画笔宽度微
        img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
     # 框选出人脸区域,在人脸区域而不是全图中进行人眼检测,节省计算资源
        face_area = img[y:y+h, x:x+w]
        eyes = eye_cascade.detectMultiScale(face_area)
     # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
        for (ex,ey,ew,eh) in eyes:
            #画出人眼框,绿色,画笔宽度为1
            cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,255,0),1)
        
 # 实时展示效果画面
    cv2.imshow('frame2',img)
    # 每5毫秒监听一次键盘动作
    if cv2.waitKey(5)  0xFF == ord('q'):
        break

# 最后,关闭所有窗口
cap.release()
cv2.destroyAllWindows()

二、调用电脑摄像头进行实时人脸+眼睛识别+微笑识别

import cv2

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml')

eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_eye.xml')

smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_smile.xml')
# 调用摄像头摄像头
cap = cv2.VideoCapture(0)

while(True):
    # 获取摄像头拍摄到的画面
    ret, frame = cap.read()
    faces = face_cascade.detectMultiScale(frame, 1.3, 2)
    img = frame
    for (x,y,w,h) in faces:
     # 画出人脸框,蓝色,画笔宽度微
        img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
     # 框选出人脸区域,在人脸区域而不是全图中进行人眼检测,节省计算资源
        face_area = img[y:y+h, x:x+w]
        
        ## 人眼检测
        # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
        eyes = eye_cascade.detectMultiScale(face_area,1.3,10)
        for (ex,ey,ew,eh) in eyes:
            #画出人眼框,绿色,画笔宽度为1
            cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,255,0),1)
        
        ## 微笑检测
        # 用微笑级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
        smiles = smile_cascade.detectMultiScale(face_area,scaleFactor= 1.16,minNeighbors=65,minSize=(25, 25),flags=cv2.CASCADE_SCALE_IMAGE)
        for (ex,ey,ew,eh) in smiles:
            #画出微笑框,红色(BGR色彩体系),画笔宽度为1
            cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,0,255),1)
            cv2.putText(img,'Smile',(x,y-7), 3, 1.2, (0, 0, 255), 2, cv2.LINE_AA)
        
 # 实时展示效果画面
    cv2.imshow('frame2',img)
    # 每5毫秒监听一次键盘动作
    if cv2.waitKey(5)  0xFF == ord('q'):
        break

# 最后,关闭所有窗口
cap.release()
cv2.destroyAllWindows()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • Python基于Opencv来快速实现人脸识别过程详解(完整版)
  • python实现人脸识别代码
  • Python 40行代码实现人脸识别功能
  • python实现人脸识别经典算法(一) 特征脸法
  • python+opencv实现的简单人脸识别代码示例
  • Python3 利用face_recognition实现人脸识别的方法
  • Python人脸识别第三方库face_recognition接口说明文档
  • python使用opencv进行人脸识别
  • 详解如何用OpenCV + Python 实现人脸识别
  • Python3利用Dlib19.7实现摄像头人脸识别的方法

标签:沈阳 沧州 红河 长治 河南 乐山 新疆 上海

巨人网络通讯声明:本文标题《基于python+opencv调用电脑摄像头实现实时人脸眼睛以及微笑识别》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266