主页 > 知识库 > python读取mnist数据集方法案例详解

python读取mnist数据集方法案例详解

热门标签:智能手机 网站文章发布 呼叫中心市场需求 美图手机 服务器配置 检查注册表项 铁路电话系统 银行业务

mnist手写数字数据集在机器学习中非常常见,这里记录一下用python从本地读取mnist数据集的方法。

数据集格式介绍

这部分内容网络上很常见,这里还是简明介绍一下。网络上下载的mnist数据集包含4个文件:

前两个分别是测试集的image和label,包含10000个样本。后两个是训练集的,包含60000个样本。.gz表示这个一个压缩包,如果进行解压的话,会得到.ubyte格式的二进制文件。

上图是训练集的label和image数据的存储格式。两个文件最开始都有magic number和number of images/items两个数据,有用的是第二个,表示文件中存储的样本个数。另外要注意的是数据的位数,有32位整型和8位整型两种。

读取方法

.gz格式的文件读取

需要import gzip
读取训练集的代码如下:

def load_mnist_train(path, kind='train'): 
'‘'
path:数据集的路径
kind:值为train,代表读取训练集
‘'‘   
    labels_path = os.path.join(path,'%s-labels-idx1-ubyte.gz'% kind)
    images_path = os.path.join(path,'%s-images-idx3-ubyte.gz'% kind)
    #使用gzip打开文件
    with gzip.open(labels_path, 'rb') as lbpath:
	    #使用struct.unpack方法读取前两个数据,>代表高位在前,I代表32位整型。lbpath.read(8)表示一次从文件中读取8个字节
	    #这样读到的前两个数据分别是magic number和样本个数
        magic, n = struct.unpack('>II',lbpath.read(8))
        #使用np.fromstring读取剩下的数据,lbpath.read()表示读取所有的数据
        labels = np.fromstring(lbpath.read(),dtype=np.uint8)
    with gzip.open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))
        images = np.fromstring(imgpath.read(),dtype=np.uint8).reshape(len(labels), 784)
    return images, labels

读取测试集的代码类似。

非压缩文件的读取

如果在本地对四个文件解压缩之后,得到的就是.ubyte格式的文件,这时读取的代码有所变化。

def load_mnist_train(path, kind='train'): 
'‘'
path:数据集的路径
kind:值为train,代表读取训练集
‘'‘   
    labels_path = os.path.join(path,'%s-labels-idx1-ubyte'% kind)
    images_path = os.path.join(path,'%s-images-idx3-ubyte'% kind)
    #不再用gzip打开文件
    with open(labels_path, 'rb') as lbpath:
	    #使用struct.unpack方法读取前两个数据,>代表高位在前,I代表32位整型。lbpath.read(8)表示一次从文件中读取8个字节
	    #这样读到的前两个数据分别是magic number和样本个数
        magic, n = struct.unpack('>II',lbpath.read(8))
        #使用np.fromfile读取剩下的数据
        labels = np.fromfile(lbpath,dtype=np.uint8)
    with gzip.open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))
        images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)
    return images, labels

读取之后可以查看images和labels的长度,确认读取是否正确。

到此这篇关于python读取mnist数据集方法案例详解的文章就介绍到这了,更多相关python读取mnist数据集方法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python rindex()方法案例详解
  • Python 实现静态链表案例详解
  • Python 概率生成问题案例详解
  • Python 二叉树的概念案例详解
  • Python实现堆排序案例详解
  • 超实用的 10 段 Python 案例

标签:沧州 上海 河南 红河 沈阳 新疆 长治 乐山

巨人网络通讯声明:本文标题《python读取mnist数据集方法案例详解》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266