主页 > 知识库 > Python 敏感词过滤的实现示例

Python 敏感词过滤的实现示例

热门标签:美图手机 服务器配置 网站文章发布 呼叫中心市场需求 银行业务 铁路电话系统 检查注册表项 智能手机

 一个简单的实现

主要是通过循环和replace的方式进行敏感词的替换

class NaiveFilter():

    '''Filter Messages from keywords

    very simple filter implementation

    >>> f = NaiveFilter()
    >>> f.parse("filepath")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keywords = set([])

    def parse(self, path):
        for keyword in open(path):
            self.keywords.add(keyword.strip().decode('utf-8').lower())

    def filter(self, message, repl="*"):
        message = str(message).lower()
        for kw in self.keywords:
            message = message.replace(kw, repl)
        return message

使用BSF(宽度优先搜索)进行实现

对于搜索查找进行了优化,对于英语单词,直接进行了按词索引字典查找。对于其他语言模式,我们采用逐字符查找匹配的一种模式。

BFS:宽度优先搜索方式

class BSFilter:

    '''Filter Messages from keywords

    Use Back Sorted Mapping to reduce replacement times

    >>> f = BSFilter()
    >>> f.add("sexy")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keywords = []
        self.kwsets = set([])
        self.bsdict = defaultdict(set)
        self.pat_en = re.compile(r'^[0-9a-zA-Z]+$')  # english phrase or not

    def add(self, keyword):
        if not isinstance(keyword, str):
            keyword = keyword.decode('utf-8')
        keyword = keyword.lower()
        if keyword not in self.kwsets:
            self.keywords.append(keyword)
            self.kwsets.add(keyword)
            index = len(self.keywords) - 1
            for word in keyword.split():
                if self.pat_en.search(word):
                    self.bsdict[word].add(index)
                else:
                    for char in word:
                        self.bsdict[char].add(index)

    def parse(self, path):
        with open(path, "r") as f:
            for keyword in f:
                self.add(keyword.strip())

    def filter(self, message, repl="*"):
        if not isinstance(message, str):
            message = message.decode('utf-8')
        message = message.lower()
        for word in message.split():
            if self.pat_en.search(word):
                for index in self.bsdict[word]:
                    message = message.replace(self.keywords[index], repl)
            else:
                for char in word:
                    for index in self.bsdict[char]:
                        message = message.replace(self.keywords[index], repl)
        return message

使用DFA(Deterministic Finite Automaton)进行实现

DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
使用了嵌套的字典来实现。

class DFAFilter():

    '''Filter Messages from keywords

    Use DFA to keep algorithm perform constantly

    >>> f = DFAFilter()
    >>> f.add("sexy")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keyword_chains = {}
        self.delimit = '\x00'

    def add(self, keyword):
        if not isinstance(keyword, str):
            keyword = keyword.decode('utf-8')
        keyword = keyword.lower()
        chars = keyword.strip()
        if not chars:
            return
        level = self.keyword_chains
        for i in range(len(chars)):
            if chars[i] in level:
                level = level[chars[i]]
            else:
                if not isinstance(level, dict):
                    break
                for j in range(i, len(chars)):
                    level[chars[j]] = {}
                    last_level, last_char = level, chars[j]
                    level = level[chars[j]]
                last_level[last_char] = {self.delimit: 0}
                break
        if i == len(chars) - 1:
            level[self.delimit] = 0

    def parse(self, path):
        with open(path,encoding='UTF-8') as f:
            for keyword in f:
                self.add(keyword.strip())

    def filter(self, message, repl="*"):
        if not isinstance(message, str):
            message = message.decode('utf-8')
        message = message.lower()
        ret = []
        start = 0
        while start  len(message):
            level = self.keyword_chains
            step_ins = 0
            for char in message[start:]:
                if char in level:
                    step_ins += 1
                    if self.delimit not in level[char]:
                        level = level[char]
                    else:
                        ret.append(repl * step_ins)
                        start += step_ins - 1
                        break
                else:
                    ret.append(message[start])
                    break
            else:
                ret.append(message[start])
            start += 1

        return ''.join(ret)

到此这篇关于Python 敏感词过滤的实现示例的文章就介绍到这了,更多相关Python 敏感词过滤内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • python实现过滤敏感词
  • Python实现敏感词过滤的4种方法
  • python用类实现文章敏感词的过滤方法示例
  • 浅谈Python 敏感词过滤的实现
  • 利用Python正则表达式过滤敏感词的方法
  • Python 实现王者荣耀中的敏感词过滤示例
  • python 实现敏感词过滤的方法

标签:沧州 乐山 河南 上海 沈阳 新疆 长治 红河

巨人网络通讯声明:本文标题《Python 敏感词过滤的实现示例》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266