主页 > 知识库 > OpenCV半小时掌握基本操作之直线检测

OpenCV半小时掌握基本操作之直线检测

热门标签:银川电话机器人电话 怎么办理400客服电话 B52系统电梯外呼显示E7 莱芜电信外呼系统 企业微信地图标注 沈阳防封电销电话卡 鹤壁手机自动外呼系统违法吗 地图标注多个 高德地图标注收入咋样

【OpenCV】 ⚠️高手勿入! 半小时学会基本操作 ⚠️ 直线检测

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 13 课)

霍夫直线变换

霍夫变换 (Hough Line Transform) 是图像处理中的一种特征提取技术. 通过平面空间到极值坐标空间的转换, 可以帮助我们实现直线检测. 如图:

原理详解

当我们把直线 y = kx + b 画在指标坐标系上, 如下图. 我们再从原点引线段到直线上的任一点.

我们可以得到这条线段与 x 轴的夹角为 θ, 距离是 r. 对于直线上的任一点 (x0, y0), 我们可以得到公式:

代码实战

HoughLines

格式:

cv2.HoughLines(image, rho, theta, threshold, lines=None, srn=None, stn=None, min_theta=None, max_theta=None)

参数:

  • image: 输入图像
  • rho: 线性搜索半径步长, 以像素为单位
  • theta: 线性搜索步长, 以弧度为单位
  • threshold: 累计阈值

例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("sudoku.jpg")
image_copy = image.copy()

# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 边缘检测, Sobel算子大小为3
edges = cv2.Canny(image_gray, 170, 220, apertureSize=3)

# 霍夫曼直线检测
lines = cv2.HoughLines(edges, 1, np.pi / 180, 250)

# 遍历
for line in lines:
    # 获取rho和theta
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(image_copy, (x1, y1), (x2, y2), (0, 0, 255), thickness=5)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(image_gray, "gray")
ax[1, 0].imshow(edges, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image gray")
ax[1, 0].set_title("image edge")
ax[1, 1].set_title("image line")

plt.show()

输出结果:

HoughLinesP

此函数在 HoughLines 的基础上末尾加了一个代表概率 (Probabilistic) 的 P, 表明它可以采用累计概率霍夫变换, 来找出二值图像中的直线.

格式:

HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)

参数:

  • image: 输入图像
  • rho: 线性搜索半径步长, 以像素为单位
  • theta: 线性搜索步长, 以弧度为单位
  • threshold: 累计阈值
  • minLineLength: 最短直线长度
  • maxLineGap: 最大孔隙距离

例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("sudoku.jpg")
image_copy = image.copy()

# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 边缘检测, Sobel算子大小为3
edges = cv2.Canny(image_gray, 170, 220, apertureSize=3)

# 霍夫曼直线检测
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=100, maxLineGap=10)

# 遍历
for line in lines:

    # 获取坐标
    x1, y1, x2, y2 = line[0]
    cv2.line(image_copy, (x1, y1), (x2, y2), (0, 0, 255), thickness=5)


# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(image_gray, "gray")
ax[1, 0].imshow(edges, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image gray")
ax[1, 0].set_title("image edge")
ax[1, 1].set_title("image line")

plt.show()

输出结果:

到此这篇关于OpenCV半小时掌握基本操作之直线检测的文章就介绍到这了,更多相关OpenCV直线检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • OpenCV半小时掌握基本操作之分水岭算法
  • 最简单的javascript对象实例代码
  • OpenCV半小时掌握基本操作之傅里叶变换
  • OpenCV半小时掌握基本操作之图像轮廓
  • OpenCV半小时掌握基本操作之直方图
  • OpenCV半小时掌握基本操作之模板匹配
  • OpenCV半小时掌握基本操作之圆圈检测
  • OpenCV半小时掌握基本操作之对象测量
  • OpenCV半小时掌握基本操作之像素加减乘除&逻辑运算

标签:湘西 安庆 三亚 呼伦贝尔 乌鲁木齐 葫芦岛 呼伦贝尔 银川

巨人网络通讯声明:本文标题《OpenCV半小时掌握基本操作之直线检测》,本文关键词  OpenCV,半小时,掌握,基本操作,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《OpenCV半小时掌握基本操作之直线检测》相关的同类信息!
  • 本页收集关于OpenCV半小时掌握基本操作之直线检测的相关信息资讯供网民参考!
  • 推荐文章