主页 > 知识库 > OpenCV半小时掌握基本操作之图像梯度

OpenCV半小时掌握基本操作之图像梯度

热门标签:鹤壁手机自动外呼系统违法吗 怎么办理400客服电话 莱芜电信外呼系统 地图标注多个 B52系统电梯外呼显示E7 沈阳防封电销电话卡 银川电话机器人电话 企业微信地图标注 高德地图标注收入咋样

【OpenCV】⚠️高手勿入! 半小时学会基本操作⚠️图像梯度

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

梯度运算

梯度: 膨胀 (Dilating) - 腐蚀 (Eroding).

例子:

# 读取图片
pie = cv2.imread("pie.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 计算梯度
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel)

# 图片展示
cv2.imshow("gradient", gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

礼帽

礼帽 (Top Hat): 原始输入 - 开运算结果.

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel)

# 图片展示
cv2.imshow("tophat", tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

黑帽

黑帽 (Black Hat): 闭运算 - 原始输入.

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel)

# 图片展示
cv2.imshow("blackhat", blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

Sobel 算子

Sobel 算子 (Sobeloperator) 是边缘检测中非常重要的一个算子. Sobel 算子是一类离散性差分算子, 用来运算图像高亮度函数的灰度之近似值.

格式:

cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:

src: 原图

ddepth: 图片深度

dx: 水平方向

dy: 竖直方向

ksize: 算子大小

计算 x

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)

# 展示图片
cv2.imshow("sobelx", sobelx)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

计算 y

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)

# 展示图片
cv2.imshow("sobely", sobely)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

计算 x+y

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobel = cv2.Sobel(img, -1, 1, 1, ksize=3)

# 展示图片
cv2.imshow("sobel", sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

融合

代码:

# Sobel算子
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 转换成绝对值
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbs(sobely)

# 融合
sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 展示图片
cv2.imshow("sobel_xy", sobel_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

注: 当 ddepth 设置为 -1, 即与原图保持一致, 得到的结果可能是错误的. 计算梯度值可能出现负数, 负数会自动截断为 0. 为了避免信息丢失, 我们需要使用更高是数据类型 cv2.CV_64F, 再通过取绝对值将其映射到 cv2.CV_8U 类型.

到此这篇关于OpenCV半小时掌握基本操作之图像梯度的文章就介绍到这了,更多相关OpenCV图像梯度内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • OpenCV 图像梯度的实现方法
  • OpenCV-Python实现图像梯度与Sobel滤波器
  • opencv python图像梯度实例详解
  • OpenCV半小时掌握基本操作之分水岭算法
  • OpenCV半小时掌握基本操作之傅里叶变换
  • OpenCV半小时掌握基本操作之图像轮廓
  • OpenCV半小时掌握基本操作之直方图
  • OpenCV半小时掌握基本操作之模板匹配
  • OpenCV半小时掌握基本操作之圆圈检测
  • OpenCV半小时掌握基本操作之对象测量

标签:银川 湘西 呼伦贝尔 呼伦贝尔 葫芦岛 三亚 乌鲁木齐 安庆

巨人网络通讯声明:本文标题《OpenCV半小时掌握基本操作之图像梯度》,本文关键词  OpenCV,半小时,掌握,基本操作,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《OpenCV半小时掌握基本操作之图像梯度》相关的同类信息!
  • 本页收集关于OpenCV半小时掌握基本操作之图像梯度的相关信息资讯供网民参考!
  • 推荐文章