主页 > 知识库 > 入门tensorflow教程之TensorBoard可视化模型训练

入门tensorflow教程之TensorBoard可视化模型训练

热门标签:检查注册表项 银行业务 服务器配置 呼叫中心市场需求 铁路电话系统 网站文章发布 智能手机 美图手机

TensorBoard是用于可视化图形

和其他工具以理解、调试和优化模型的界面。

它是一种为机器学习工作流提供测量和可视化的工具。

它有助于跟踪损失和准确性、模型图可视化、低维空间中的项目嵌入等指标。

下面,我们使用MNIST 数据的图像分类模型 ,将首先导入所需的库并加载数据集。

模型的建立使用最简单的顺序模型

import tensorflow as tf
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
from tensorflow.keras.utils import np_utils
X_train=X_train.astype('float32')
X_test=X_test.astype('float32')
X_train/=255
X_test/=255
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(28, 28, 1)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

keras API 训练模型时,

创建了一个 tensorboard 回调

以确保将指标记录在指定的目录中。

这里保存到logs/fit

import datetime
!rm -rf ./logs/
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback=tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(x=X_train, y=y_train,epochs=30,validation_data=(X_test, y_test),  callbacks=[tensorboard_callback])

如果使用colab,并不支持使用终端

对于 Windows 用户:tensorboard --logdir= logs/fitg

Tensorboard 位于:http://localhost:6006

如果使用colab,需要加载TensorBoard扩展程序

%load_ext tensorboard
%tensorboard --logdir logs/fit
from tensorboard import notebook
notebook.list
notebook.display(port=6006, height=1000) 

如果训练迭代5k到55k,

TensorBoard会给出测试集的大概结果

如果在torch中是使用TensorBoard,在PyTorch 1.8.1 版本的发布,需要使用 PyTorch Profiler,

需要安装torch_tb_profiler

torch_tb_profilerTensorBoard的一个插件,可以可视化GPU的情况,

具体参考官方教程

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

https://github.com/pytorch/kineto/tree/main/tb_plugin

到此这篇关于小白入门学习TensorBoard可视化模型训练的文章就介绍到这了,更多相关TensorBoard可视化模型训练内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • TensorBoard 计算图的可视化实现
  • Tensorflow的可视化工具Tensorboard的初步使用详解
  • Tensorflow 自带可视化Tensorboard使用方法(附项目代码)
  • TensorFlow可视化工具TensorBoard默认图与自定义图

标签:红河 河南 沧州 沈阳 乐山 长治 上海 新疆

巨人网络通讯声明:本文标题《入门tensorflow教程之TensorBoard可视化模型训练》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266