主页 > 知识库 > python 使用GDAL实现栅格tif转矢量shp的方式小结

python 使用GDAL实现栅格tif转矢量shp的方式小结

热门标签:智能手机 网站文章发布 服务器配置 铁路电话系统 检查注册表项 呼叫中心市场需求 美图手机 银行业务

前言

目前有一张tif格式的栅格影像,需要在web地图上进行展示,使用动态切片WMS的方式,渲染速度比较慢,而且大的时候会出现模糊的问题。并且后面需要做多期影像的切换,渲染与加载效率也值得关注。

计划是使用栅格转矢量的方式,将栅格数据转为矢量shp文件,然后进行矢量切片,使用Mapbox进行前端动态渲染。在网上查询了很多资料,有人说使用d3-contour在node.js中生成或者使用rasterio在python中进行转换,整体过程都比较麻烦,很不易实现。最终选定了使用GDAL进行栅格转矢量的方法,代码比较简单。
原始tif影像(12.8MB)如下:

核心函数

GDAL中栅格转矢量的函数主要是以下两个,二者的参数没有任何区别,只是功能有区别:

FPolygonize(*args, **kwargs)

FPolygonize(Band srcBand, Band maskBand, Layer outLayer, int iPixValField, char options=None, GDALProgressFunc callback=0, void * callback_data=None) -> int

将每个像元转成一个矩形。

Polygonize(*args, **kwargs) **

Polygonize(Band srcBand, Band maskBand, Layer outLayer, int iPixValField, char ** options=None, GDALProgressFunc callback=0, void * callback_data=None) -> int

将每个像元转成一个矩形,然后将相似的像元进行合并。

转换代码

from osgeo import gdal, ogr, osr
import os
import datetime
import numpy as np

path = "Z_NAFP20210727.tif"


if __name__ == '__main__':
    start_time = datetime.datetime.now()

    inraster = gdal.Open(path)  # 读取路径中的栅格数据
    inband = inraster.GetRasterBand(1)  # 这个波段就是最后想要转为矢量的波段,如果是单波段数据的话那就都是1
    prj = osr.SpatialReference()
    prj.ImportFromWkt(inraster.GetProjection())  # 读取栅格数据的投影信息,用来为后面生成的矢量做准备

    outshp = path[:-4] + ".shp"  # 给后面生成的矢量准备一个输出文件名,这里就是把原栅格的文件名后缀名改成shp了
    drv = ogr.GetDriverByName("ESRI Shapefile")
    if os.path.exists(outshp):  # 若文件已经存在,则删除它继续重新做一遍
        drv.DeleteDataSource(outshp)
    Polygon = drv.CreateDataSource(outshp)  # 创建一个目标文件
    Poly_layer = Polygon.CreateLayer(path[:-4], srs=prj, geom_type=ogr.wkbMultiPolygon)  # 对shp文件创建一个图层,定义为多个面类
    newField = ogr.FieldDefn('value', ogr.OFTReal)  # 给目标shp文件添加一个字段,用来存储原始栅格的pixel value,浮点型,
    Poly_layer.CreateField(newField)

    gdal.Polygonize(inband, None, Poly_layer, 0)  # 核心函数,执行的就是栅格转矢量操作
    # gdal.FPolygonize(inband, None, Poly_layer, 0)  # 只转矩形,不合并
    Polygon.SyncToDisk()
    Polygon = None
    end_time = datetime.datetime.now()
    print("Succeeded at", end_time)
    print("Elapsed Time:", end_time - start_time)  # 输出程序运行所需时间

转换效果

  • 使用FPolygonize

转换之后的矢量数据有270MB,非常大,打开非常卡

  • 使用Polygonize

合并之后的矢量数据有48MB,相对第一种方法数据量大大减少

到此这篇关于python 使用GDAL实现栅格tif转矢量shp的文章就介绍到这了,更多相关python栅格tif转矢量shp内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • 在Python中用GDAL实现矢量对栅格的切割实例
  • python使用gdal对shp读取,新建和更新的实例
  • python安装gdal的两种方法
  • 利用python GDAL库读写geotiff格式的遥感影像方法
  • python 矢量数据转栅格数据代码实例

标签:沧州 长治 沈阳 红河 河南 新疆 上海 乐山

巨人网络通讯声明:本文标题《python 使用GDAL实现栅格tif转矢量shp的方式小结》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266