在数据分析中,分组聚合二者缺一不可。对数据聚合(求和、平均值等)通常是不可避免的。pd.agg()
很方便进行聚合操作。
import pandas as pd df1 = pd.DataFrame({'sex':list('FFMFMMF'),'smoker':list('YNYYNYY'),'age':[21,30,17,37,40,18,26],'weight':[120,100,132,140,94,89,123]})
grouped = df1.groupby(['sex','smoker']) # sex有 F M 二值,smoker有 Y N 二值,故分成四组。
grouped['age'].agg('mean')
sex smoker F N 30.0 Y 28.0 M N 40.0 Y 17.5 Name: age, dtype: float64
grouped.agg('mean')
grouped['age'].agg(['min','max'])
grouped['age'].agg([('A','mean'),('B','max')])
grouped.agg({'age':['sum','mean'], 'weight':['min','max']})
def Max_cut_Min(group): return group.max()-group.min() grouped.agg(Max_cut_Min)
grouped.describe()
参考博客:link
到此这篇关于Pandas实现聚合运算agg()的示例代码的文章就介绍到这了,更多相关Pandas 聚合运算agg()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!