主页 > 知识库 > Python容错的前缀树实现中文纠错

Python容错的前缀树实现中文纠错

热门标签:铁路电话系统 网站文章发布 服务器配置 美图手机 呼叫中心市场需求 智能手机 检查注册表项 银行业务

介绍

本文使用 Python 实现了前缀树,并且支持编辑距离容错的查询。文中的前缀树只存储了三个分词,格式为 (分词字符串,频率) ,如:('中海晋西园', 2)、('中海西园', 24)、('中南海', 4),可以换成自己的文件进行数据的替换。在查询的时候要指定一个字符串和最大的容错编辑距离。

实现

class Word:
    def __init__(self, word, freq):
        self.word = word
        self.freq = freq

class Trie:
    def __init__(self):
        self.root = LetterNode('')
        self.START = 3

    def insert(self, word, freq):
        self.root.insert(word, freq, 0)

    def findAll(self, query, maxDistance):
        suggestions = self.root.recommend(query, maxDistance, self.START)
        return sorted(set(suggestions), key=lambda x: x.freq)


class LetterNode:
    def __init__(self, char):
        self.REMOVE = -1
        self.ADD = 1
        self.SAME = 0
        self.CHANGE = 2
        self.START = 3
        self.pointers = []
        self.char = char
        self.word = None

    def charIs(self, c):
        return self.char == c

    def insert(self, word, freq, depth):
        if ' ' in word:
            word = [i for i in word.split(' ')]
        if depth  len(word):
            c = word[depth].lower()
            for next in self.pointers:
                if next.charIs(c):
                    return next.insert(word, freq, depth + 1)
            nextNode = LetterNode(c)
            self.pointers.append(nextNode)
            return nextNode.insert(word, freq, depth + 1)
        else:
            self.word = Word(word, freq)

    def recommend(self, query, movesLeft, lastAction):
        suggestions = []
        length = len(query)

        if length >= 0 and movesLeft - length >= 0 and self.word:
            suggestions.append(self.word)

        if movesLeft == 0 and length > 0:
            for next in self.pointers:
                if next.charIs(query[0]):
                    suggestions += next.recommend(query[1:], movesLeft, self.SAME)
                    break

        elif movesLeft > 0:
            for next in self.pointers:
                if length > 0:
                    if next.charIs(query[0]):
                        suggestions += next.recommend(query[1:], movesLeft, self.SAME)
                    else:
                        suggestions += next.recommend(query[1:], movesLeft - 1, self.CHANGE)
                        if lastAction != self.CHANGE and lastAction != self.REMOVE:
                            suggestions += next.recommend(query, movesLeft - 1, self.ADD)
                        if lastAction != self.ADD and lastAction != self.CHANGE:
                            if length > 1 and next.charIs(query[1]):
                                suggestions += next.recommend(query[2:], movesLeft - 1, self.REMOVE)
                            elif length > 2 and next.charIs(query[2]) and movesLeft == 2:
                                suggestions += next.recommend(query[3:], movesLeft - 2, self.REMOVE)
                else:
                    if lastAction != self.CHANGE and lastAction != self.REMOVE:
                        suggestions += next.recommend(query, movesLeft - 1, self.ADD)
        return suggestions



def buildTrieFromFile():
    trie = Trie()
    rows = [('中海晋西园', 2),('中海西园', 24),('中南海', 4)]
    for row in rows:
        trie.insert(row[0], int(row[1]))
    return trie


def suggestor(trie, s, maxDistance):
    if ' ' in s:
        s = [x for x in s.split(' ')]
    suggestions = trie.findAll(s, maxDistance)
    return [str(x.word) for x in suggestions]


if __name__ == "__main__":
    trie = buildTrieFromFile()
    r = suggestor(trie, '中海晋西园', 1)
    print(r)

分析

结果打印:
['中海晋西园', '中海西园']

可以看出“中海晋西园”是和输入完全相同的字符串,编辑距离为 0 ,所以符合最大编辑距离为 1 的要求,直接返回。

“中海西园”是“中海晋西园”去掉“晋”字之后的结果,编辑距离为 1, 所以符合最大编辑距离为 1 的要求,直接返回。

另外,“中南海”和“中海晋西园”的编辑距离为 4 ,不符合最大编辑距离为 1 的要求,所以结果中没有出现。

参考

https://github.com/leoRoss/AutoCorrectTrie

到此这篇关于Python容错的前缀树实现中文纠错的文章就介绍到这了,更多相关Python 中文纠错内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python中文纠错的简单实现

标签:沧州 沈阳 河南 红河 长治 乐山 新疆 上海

巨人网络通讯声明:本文标题《Python容错的前缀树实现中文纠错》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266