主页 > 知识库 > Python利用机器学习算法实现垃圾邮件的识别

Python利用机器学习算法实现垃圾邮件的识别

热门标签:长春极信防封电销卡批发 外卖地址有什么地图标注 预览式外呼系统 烟台电话外呼营销系统 企业彩铃地图标注 电销机器人录音要学习什么 上海正规的外呼系统最新报价 银川电话机器人电话 如何地图标注公司

开发工具

**Python版本:**3.6.4

相关模块:

scikit-learn模块;

jieba模块;

numpy模块;

以及一些Python自带的模块。

环境搭建

安装Python并添加到环境变量,pip安装需要的相关模块即可。

逐步实现

(1)划分数据集

网上用于垃圾邮件识别的数据集大多是英文邮件,所以为了表示诚意,我花了点时间找了一份中文邮件的数据集。数据集划分如下:

训练数据集:

7063封正常邮件(data/normal文件夹下);

7775封垃圾邮件(data/spam文件夹下)。

测试数据集:

共392封邮件(data/test文件夹下)。

(2)创建词典

数据集里的邮件内容一般是这样的:

首先,我们利用正则表达式过滤掉非中文字符,然后再用jieba分词库对语句进行分词,并清除一些停用词,最后再利用上述结果创建词典,词典格式为:

{“词1”: 词1词频, “词2”: 词2词频…}

这些内容的具体实现均在**“utils.py”**文件中体现,在主程序中(train.py)调用即可:

最终结果保存在**“results.pkl”**文件内。

大功告成了么?当然没有!!!

现在的词典里有52113个词,显然太多了,有些词只出现了一两次,后续特征提取的时候一直空占着一个维度显然是不明智的做法。因此,我们只保留词频最高的4000个词作为最终创建的词典:

最终结果保存在**“wordsDict.pkl”**文件内。

(3)特征提取

词典准备好之后,我们就可以把每封信的内容转换为词向量了,显然其维度为4000,每一维代表一个高频词在该封信中出现的频率,最后,我们将这些词向量合并为一个大的特征向量矩阵,其大小为:

(7063+7775)×4000

即前7063行为正常邮件的特征向量,其余为垃圾邮件的特征向量。

上述内容的具体实现仍然在**“utils.py”**文件中体现,在主程序中调用如下:

最终结果保存在**“fvs_%d_%d.npy”**文件内,其中第一个格式符代表正常邮件的数量,第二个格式符代表垃圾邮件的数量。

(4)训练分类器

我们使用scikit-learn机器学习库来训练分类器,模型选择朴素贝叶斯分类器和SVM(支持向量机):

(5)性能测试

利用测试数据集对模型进行测试:

结果如下:

可以发现两个模型的性能是差不多的(SVM略胜于朴素贝叶斯),但SVM更倾向于向垃圾邮件的判定。

到此这篇关于Python实现垃圾邮件的识别的文章就介绍到这了,更多相关Python识别垃圾邮件内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • python实现自动化办公邮件合并功能
  • Python 发送SMTP邮件的简单教程
  • Python一行代码实现自动发邮件功能
  • Python基础详解之邮件处理
  • Python 调用API发送邮件
  • Python基于SMTP发送邮件的方法
  • python基于SMTP发送QQ邮件
  • python 自动监控最新邮件并读取的操作
  • python实现发送邮件
  • python 实现网易邮箱邮件阅读和删除的辅助小脚本
  • python如何发送带有附件、正文为HTML的邮件
  • python使用Windows的wmic命令监控文件运行状况,如有异常发送邮件报警
  • 用python监控服务器的cpu,磁盘空间,内存,超过邮件报警
  • python邮件中附加文字、html、图片、附件实现方法
  • Python用20行代码实现完整邮件功能

标签:湖北 西宁 珠海 盘锦 宜昌 潮州 上饶 佳木斯

巨人网络通讯声明:本文标题《Python利用机器学习算法实现垃圾邮件的识别》,本文关键词  Python,利用,机器,学习,算法,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Python利用机器学习算法实现垃圾邮件的识别》相关的同类信息!
  • 本页收集关于Python利用机器学习算法实现垃圾邮件的识别的相关信息资讯供网民参考!
  • 推荐文章