主页 > 知识库 > Python快速实现一键抠图功能的全过程

Python快速实现一键抠图功能的全过程

热门标签:网站文章发布 检查注册表项 智能手机 银行业务 美图手机 铁路电话系统 呼叫中心市场需求 服务器配置

简介

使用百度深度学习框架paddlepaddle对人像图片进行自动化抠图

安装

根据PaddlePaddle官网命令安装

pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
pip install paddlehub -i https://mirror.baidu.com/pypi/simple

初试

1.jpg

2.jpg

3.jpg

4.jpg

5.jpg

import paddlehub as hub
from pathlib import Path

paths = [str(i) for i in Path('.').glob('*.jpg')]  # 当前路径下所有.jpg文件
human_seg = hub.Module(name='deeplabv3p_xception65_humanseg')
results = human_seg.segmentation(paths=paths, visualization=True, output_dir='output')
# results = human_seg.segmentation(paths=paths, use_gpu=True, visualization=True, output_dir='output')  # 使用GPU
print(results)

代码会自动下载图像分割模型deeplabv3p_xception65_humanseg到C:\Users\Administrator\.paddlehub\modules

效果

文件名 原图 效果
1.jpg
2.jpg
3.jpg
4.jpg
5.jpg

详解

人像分割API

def segmentation(images=None,
                 paths=None,
                 batch_size=1,
                 use_gpu=False,
                 visualization=False,
                 output_dir='humanseg_output')

参数

  • images(list[numpy.ndarray]):图片数据,BGR格式
  • paths(list[str]):图片路径
  • batch_size(int):批量处理数量
  • use_gpu(bool):是否使用 GPU
  • visualization(bool):是否将识别结果保存为图片
  • output_dir(str):图片保存路径

遇到的坑

1. 报错RuntimeError: Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id.

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

set CUDA_VISIBLE_DEVICES=0

参考文献

一款Python实用神器,5 行 Python 代码 实现一键批量扣图

总结

到此这篇关于Python快速实现一键抠图功能的文章就介绍到这了,更多相关Python一键抠图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • python和opencv实现抠图
  • 3行Python代码实现图像照片抠图和换底色的方法
  • Python实现AI自动抠图实例解析
  • python实现抠图给证件照换背景源码
  • python实现人工智能Ai抠图功能
  • Python用5行代码实现批量抠图的示例代码
  • python利用蒙版抠图(使用PIL.Image和cv2)输出透明背景图
  • 使用python和opencv的mask实现抠图叠加

标签:河南 沧州 新疆 长治 乐山 上海 红河 沈阳

巨人网络通讯声明:本文标题《Python快速实现一键抠图功能的全过程》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266