主页 > 知识库 > 解析目标检测之IoU

解析目标检测之IoU

热门标签:企业彩铃地图标注 外卖地址有什么地图标注 电销机器人录音要学习什么 如何地图标注公司 长春极信防封电销卡批发 烟台电话外呼营销系统 预览式外呼系统 上海正规的外呼系统最新报价 银川电话机器人电话

一、IoU的简介及原理解析

IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。

开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。

为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况讨论,来计算交集。

上图就是你的直觉,这样想没有错。但计算一个交集,就要分多种情况讨论,要是程序真的按照这逻辑编写就太搞笑了。因此对这个问题进行进一步地研究显得十分有必要。

让我们重新思考一下两个框交集的计算。两个框交集的计算的实质是两个集合交集的计算,因此我们可以将两个框的交集的计算简化为:

通过简化,我们可以清晰地看到,交集计算的关键是交集上下界点(图中蓝点)的计算。

我们假设集合 A 为 [x1,x2],集合 B 为 [y1,y2]。然后我们来求AB交集的上下界限。

交集计算的逻辑

  • 交集下界z1:max(x1,y1)
  • 交集上界z2:min(x2,y2)
  • 如果z2-z1小于0,则说明集合 A 和集合 B 没有交集。

下面使用Python来实现两个一维集合的 IoU 的计算:

def iou(set_a, set_b):
    '''
    一维 iou 的计算
    '''
    x1, x2 = set_a # (left, right)
    y1, y2 = set_b # (left, right)
    
    low = max(x1, y1)
    high = min(x2, y2)
    # intersection
    if high-low0:
        inter = 0
    else:
        inter = high-low
    # union
    union = (x2 - x1) + (y2 - y1) - inter
    # iou
    iou = inter / union
    return iou

上面,我们计算了两个一维集合的 iou,将上面的程序进行扩展,即可得到两个框 IoU 计算的程序。

def iou(box1, box2):
    '''
    两个框(二维)的 iou 计算
    
    注意:边框以左上为原点
    
    box:[top, left, bottom, right]
    '''
    in_h = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_w = min(box1[3], box2[3]) - max(box1[1], box2[1])
    inter = 0 if in_h0 or in_w0 else in_h*in_w
    union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \

            (box2[2] - box2[0]) * (box2[3] - box2[1]) - inter
    iou = inter / union
    return iou

二、基于TensorFlow的IoU实现

上节介绍了IoU,及其的计算,下面我们给出其在 TensorFlow 上的实现:

import tensorflow as tf

def IoU_calculator(x, y, w, h, l_x, l_y, l_w, l_h):
    """calaulate IoU
    Args:
      x: net predicted x
      y: net predicted y
      w: net predicted width
      h: net predicted height
      l_x: label x
      l_y: label y
      l_w: label width
      l_h: label height
    
    Returns:
      IoU
    """
    
    # convert to coner
    x_max = x + w/2
    y_max = y + h/2
    x_min = x - w/2
    y_min = y - h/2
 
    l_x_max = l_x + l_w/2
    l_y_max = l_y + l_h/2
    l_x_min = l_x - l_w/2
    l_y_min = l_y - l_h/2
    # calculate the inter
    inter_x_max = tf.minimum(x_max, l_x_max)
    inter_x_min = tf.maximum(x_min, l_x_min)
 
    inter_y_max = tf.minimum(y_max, l_y_max)
    inter_y_min = tf.maximum(y_min, l_y_min)
 
    inter_w = inter_x_max - inter_x_min
    inter_h = inter_y_max - inter_y_min
    
    inter = tf.cond(tf.logical_or(tf.less_equal(inter_w,0), tf.less_equal(inter_h,0)), 
                    lambda:tf.cast(0,tf.float32), 
                    lambda:tf.multiply(inter_w,inter_h))
    # calculate the union
    union = w*h + l_w*l_h - inter
    
    IoU = inter / union
    return IoU

以上就是解析目标检测之IoU的详细内容,更多关于目标检测IoU的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • 如何通过python实现IOU计算代码实例
  • python实现交并比IOU教程
  • python shapely.geometry.polygon任意两个四边形的IOU计算实例
  • python实现IOU计算案例
  • python:目标检测模型预测准确度计算方式(基于IoU)
  • python实现的Iou与Giou代码
  • python不使用for计算两组、多个矩形两两间的iou方式
  • 浅谈Python3实现两个矩形的交并比(IoU)
  • python计算二维矩形IOU实例
  • Python计算机视觉里的IOU计算实例

标签:西宁 佳木斯 盘锦 上饶 湖北 珠海 宜昌 潮州

巨人网络通讯声明:本文标题《解析目标检测之IoU》,本文关键词  解析,目标,检测,之,IoU,解析,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《解析目标检测之IoU》相关的同类信息!
  • 本页收集关于解析目标检测之IoU的相关信息资讯供网民参考!
  • 推荐文章