主页 > 知识库 > Opencv中cv2.floodFill算法的使用

Opencv中cv2.floodFill算法的使用

热门标签:高德地图标注是免费的吗 百度地图标注位置怎么修改 地图标注视频广告 洪泽县地图标注 梅州外呼业务系统 老人电话机器人 北京电信外呼系统靠谱吗 大连crm外呼系统 无锡客服外呼系统一般多少钱

一、 泛洪算法——floodFill函数原型

cv2.floodFill(img,mask,seed,newvalue(BGR),(loDiff1,loDiff2,loDiff3),(upDiff1,upDiff2,upDiff3),flag)
  • img:为待使用泛洪算法的图像
  • mask:为掩码层,使用掩码可以规定是在哪个区域使用该算法,如果是对于完整图像都要使用,则掩码层大小为原图行数+2,列数+2.是一个二维的0矩阵,边缘一圈会在使用算法是置为1。而只有对于掩码层上对应为0的位置才能泛洪,所以掩码层初始化为0矩阵。【dtype:np.uint8
  • seed:为泛洪算法的种子点,也是根据该点的像素判断决定和其相近颜色的像素点,是否被泛洪处理。
    【类似于
  • newvalue:是对于泛洪区域新赋的值(B,G,R)
  • (loDiff1,loDiff2,loDiff3):是相对于seed种子点像素可以往下的像素值,即seed(B0,G0,R0),泛洪区域下界为(B0-loDiff1,G0-loDiff2,R0-loDiff3)
  • (upDiff1,upDiff2,upDiff3):是相对于seed种子点像素可以往上的像素值,即seed(B0,G0,R0),泛洪区域上界为(B0+upDiff1,G0+upDiff2,R0+upDiff3)
  • flag:为泛洪算法的处理模式。

  • 低八位 控制算法的连通性,是以seed点为中心,接着判断周围的几个像素点,再将泛洪区域像素点周围的几个像素点进行考虑。 一般为4,8;默认为4
  • 中间八位 与掩码层赋值密切相关,一般使用(2558)使中间8位全位1,则值为255,也就是掩码层对应原图的泛洪区域的部分被由原来的初值0赋值成255,如果中间8位为0,则赋值为1.
  • 高八位 由opencv宏参数指定
    • cv2.FLOODFILL_FIXED_RANGE:改变图像,填充newvalue
    • cv2.FLOODFILL_MASK_ONLY:不改变原图像,也就是newvalue参数失去作用,而是改变对应区域的掩码,设为中间八位的值

二、简单应用

#泛洪填充(彩色图像填充)
import cv2
import numpy as np
def fill_color_demo(image):
    copyImg = image.copy()
    h, w = image.shape[:2]
    mask = np.zeros([h+2, w+2],np.uint8)   #mask必须行和列都加2,且必须为uint8单通道阵列
    #为什么要加2可以这么理解:当从0行0列开始泛洪填充扫描时,mask多出来的2可以保证扫描的边界上的像素都会被处理
    cv.floodFill(copyImg, mask, (220, 250), (0, 255, 255), (100, 100, 100), (50, 50 ,50), cv.FLOODFILL_FIXED_RANGE)
    cv.imshow("fill_color_demo", copyImg)
 
src = cv.imread('E:/imageload/baboon.jpg')
cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
cv.imshow('input_image', src)
fill_color_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

三、应用,结合minareaRect

cv2.floodFill(initial_car,mask,(seed_x,seed_y),(255,0,0),(loDiff,loDiff,loDiff),(upDiff,upDiff,upDiff),flag)
 
points = []
row,column = mask.shape
 
for i in range(row):
    for j in range(column):
        if mask[i][j]==255:
           points.append((j,i))   #点应该输入点坐标(列,行)
points = np.asarray(points)
new_rect = cv2.minAreaRect(points)

到此这篇关于Opencv中cv2.floodFill算法的使用的文章就介绍到这了,更多相关Opencv cv2.floodFill内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python OpenCV之图片缩放的实现(cv2.resize)
  • 对python opencv 添加文字 cv2.putText 的各参数介绍
  • Opencv-Python图像透视变换cv2.warpPerspective的示例
  • python-opencv 中值滤波{cv2.medianBlur(src, ksize)}的用法
  • Python-OpenCV:cv2.imread(),cv2.imshow(),cv2.imwrite()的区别
  • Python-OpenCV中的cv2.inpaint()函数的使用

标签:清远 长春 洛阳 安庆 岳阳 泉州 吉林 怒江

巨人网络通讯声明:本文标题《Opencv中cv2.floodFill算法的使用》,本文关键词  Opencv,中,cv2.floodFill,算法,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Opencv中cv2.floodFill算法的使用》相关的同类信息!
  • 本页收集关于Opencv中cv2.floodFill算法的使用的相关信息资讯供网民参考!
  • 推荐文章