主页 > 知识库 > Pytorch可视化的几种实现方法

Pytorch可视化的几种实现方法

热门标签:ai电销机器人的优势 聊城语音外呼系统 地图标注自己和别人标注区别 南阳打电话机器人 腾讯地图标注没法显示 海外网吧地图标注注册 商家地图标注海报 打电话机器人营销 孝感营销电话机器人效果怎么样

一,利用 tensorboardX 可视化网络结构

参考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安装

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

运行: python demo.py 会出现runs文件夹,然后在cd到工程目录运行tensorboard --logdir runs

结果:


二,利用 vistom 可视化

参考:https://github.com/facebookresearch/visdom

安装和启动
安装: pip install visdom
启动:python -m visdom.server示例

    from visdom import Visdom
    #单张
    viz.image(
        np.random.rand(3, 512, 256),
        opts=dict(title=\\\\\'Random!\\', caption=\\\\\'How random.\\'),
    )
    #多张
    viz.images(
        np.random.randn(20, 3, 64, 64),
        opts=dict(title=\\\\\'Random images\\', caption=\\\\\'How random.\\')
    )

from visdom import Visdom

image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
         X = np.column_stack((np.arange(10),np.arange(10))),
         opts = dict(title = "line", legend=["Test","Test1"]))

三,利用pytorchviz可视化网络结构

参考:https://github.com/szagoruyko/pytorchviz

到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • pytorch使用tensorboardX进行loss可视化实例
  • 使用pytorch实现可视化中间层的结果
  • Pytorch十九种损失函数的使用详解
  • pytorch教程网络和损失函数的可视化代码示例

标签:南宁 聊城 迪庆 扬州 抚州 牡丹江 六盘水 杨凌

巨人网络通讯声明:本文标题《Pytorch可视化的几种实现方法》,本文关键词  Pytorch,可视化,的,几种,实现,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Pytorch可视化的几种实现方法》相关的同类信息!
  • 本页收集关于Pytorch可视化的几种实现方法的相关信息资讯供网民参考!
  • 推荐文章