Pytorch中Softmax与LogSigmoid的对比
torch.nn.Softmax
作用:
1、将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于[0,1]范围内,并求和为1。
2、返回的Tensor与原Tensor大小相同,值在[0,1]之间。
3、不建议将其与NLLLoss一起使用,可以使用LogSoftmax代替之。
4、Softmax的公式:
参数:
维度,待使用softmax计算的维度。
例子:
# 随机初始化一个tensor
a = torch.randn(2, 3)
print(a) # 输出tensor
# 初始化一个Softmax计算对象,在输入tensor的第2个维度上进行此操作
m = nn.Softmax(dim=1)
# 将a进行softmax操作
output = m(a)
print(output) # 输出tensor
tensor([[ 0.5283, 0.3922, -0.0484],
[-1.6257, -0.4775, 0.5645]])
tensor([[0.4108, 0.3585, 0.2307],
[0.0764, 0.2408, 0.6828]])
可以看见的是,无论输入的tensor中的值为正或为负,输出的tensor中的值均为正值,且加和为1。
当m的参数dim=1时,输出的tensor将原tensor按照行进行softmax操作;当m的参数为dim=0时,输出的tensor将原tensor按照列进行softmax操作。
深度学习拓展:
一般来说,Softmax函数会用于分类问题上。例如,在VGG等深度神经网络中,图像经过一系列卷积、池化操作后,我们可以得到它的特征向量,为了进一步判断此图像中的物体属于哪个类别,我们会将该特征向量变为:类别数 * 各类别得分 的形式,为了将得分转换为概率值,我们会将该向量再经过一层Softmax处理。
torch.nn.LogSigmoid
公式:
函数图:
可以见得,函数值在[0, -]之间,输入值越大函数值距离0越近,在一定程度上解决了梯度消失问题。
例子:
a = [[ 0.5283, 0.3922, -0.0484],
[-1.6257, -0.4775, 0.5645]]
a = torch.tensor(a)
lg = nn.LogSigmoid()
lgoutput = lg(a)
print(lgoutput)
tensor([[-0.4635, -0.5162, -0.7176],
[-1.8053, -0.9601, -0.4502]])
二者比较:
import torch
import torch.nn as nn
# 设置a为 2*3 的tensor
a = [[ 0.5283, 0.3922, -0.0484],
[-1.6257, -0.4775, 0.5645]]
a = torch.tensor(a)
print(a)
print('a.mean:', a.mean(1, True)) # 输出a的 行平均值
m = nn.Softmax(dim=1) # 定义Softmax函数,dim=1表示为按行计算
lg = nn.LogSigmoid() # 定义LogSigmoid函数
output = m(a)
print(output)
# 输出a经过Softmax的结果的行平均值
print('output.mean:', output.mean(1, True))
lg_output = lg(a)
print(lg_output)
# 输出a经过LogSigmoid的结果的行平均值
print('lgouput.mean:', lg_output.mean(1, True))
# 结果:
tensor([[ 0.5283, 0.3922, -0.0484],
[-1.6257, -0.4775, 0.5645]])
a.mean: tensor(-0.1111)
tensor([[0.4108, 0.3585, 0.2307],
[0.0764, 0.2408, 0.6828]])
output.mean: tensor([[0.3333], [0.3333]]) # 经过Softmax的结果的行平均值
tensor([[-0.4635, -0.5162, -0.7176],
[-1.8053, -0.9601, -0.4502]])
lgouput.mean: tensor([[-0.5658], [-1.0719]]) # 经过LogSigmoid的结果的行平均值
由上可知,继续考虑分类问题,相同的数据,经过Softmax和LogSigmoid处理后,若取最大概率值对应类别作为分类结果,那么:
1、第一行数据经过Softmax后,会选择第一个类别;经过LogSigmoid后,会选择第一个。
2、第二行数据经过Softmax后,会选择第三个类别;经过LogSigmoid后,会选择第三个。
3、一般来说,二者在一定程度上区别不是很大,由于sigmoid函数存在梯度消失问题,所以被使用的场景不多。
4、但是在多分类问题上,可以尝试选择Sigmoid函数来作为分类函数,因为Softmax在处理多分类问题上,会更容易出现各项得分十分相近的情况。瓶颈值可以根据实际情况定。
nn.Softmax()与nn.LogSoftmax()
nn.Softmax()计算出来的值,其和为1,也就是输出的是概率分布,具体公式如下:
这保证输出值都大于0,在0,1范围内。
而nn.LogSoftmax()公式如下:
由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数,
softmax求导:
logsofmax求导:
例子:
import torch.nn as nn
import torch
import numpy as np
layer1=nn.Softmax()
layer2=nn.LogSoftmax()
input=np.asarray([2,3])
input=Variable(torch.Tensor(input))
output1=layer1(input)
output2=layer2(input)
print('output1:',output1)
print('output2:',output2)
输出:
output1: Variable containing:
0.2689
0.7311
[torch.FloatTensor of size 2]
output2: Variable containing:
-1.3133
-0.3133
[torch.FloatTensor of size 2]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
您可能感兴趣的文章:- PyTorch的SoftMax交叉熵损失和梯度用法
- PyTorch: Softmax多分类实战操作
- 浅谈pytorch中torch.max和F.softmax函数的维度解释