主页 > 知识库 > 解决Pytorch在测试与训练过程中的验证结果不一致问题

解决Pytorch在测试与训练过程中的验证结果不一致问题

热门标签:网站文章发布 呼叫中心市场需求 服务器配置 检查注册表项 铁路电话系统 银行业务 美图手机 智能手机

引言

今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题。

现象

此前的错误代码是

    input_cpu = torch.ones((1, 2, 160, 160))
    target_cpu =torch.ones((1, 2, 160, 160))
    target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
    model.set_input_2(input_gpu, target_gpu)
    model.eval()
    model.forward()

应该改为

    input_cpu = torch.ones((1, 2, 160, 160))
    target_cpu =torch.ones((1, 2, 160, 160))
    target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
    model.set_input_2(input_gpu, target_gpu)
    # 先forward再eval
    model.forward()
    model.eval()

当时有个疑虑,为什么要在forward后面再加eval(),查了下相关资料,主要是在BN层以及Dropout的问题。

当使用eval()时,模型会自动固定BN层以及Dropout,选取训练好的值,否则则会取平均,可能导致生成的图片颜色失真。

PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval

使用PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval,eval()时,框架会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大!!!!!!

eg:

Class Inpaint_Network()
......
Model = Inpaint_Nerwoek()

#train:
Model.train(mode=True)
.....

#test:
Model.eval()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • Pytorch evaluation每次运行结果不同的解决
  • pytorch加载预训练模型与自己模型不匹配的解决方案
  • 踩坑:pytorch中eval模式下结果远差于train模式介绍

标签:红河 上海 河南 沧州 乐山 沈阳 新疆 长治

巨人网络通讯声明:本文标题《解决Pytorch在测试与训练过程中的验证结果不一致问题》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266