主页 > 知识库 > 浅谈tf.train.Saver()与tf.train.import_meta_graph的要点

浅谈tf.train.Saver()与tf.train.import_meta_graph的要点

热门标签:呼叫中心市场需求 Win7旗舰版 硅谷的囚徒呼叫中心 语音系统 电话运营中心 企业做大做强 客户服务 百度AI接口

(一)、tf.train.Saver()

(1). tf.train.Saver() 是用来保存tensorflow训练模型的,默认保存全部参数

(2). 用来加载参数,注:只加载存储在data中的权重和偏置项等需要训练的参数,其他一律不加载,包括meta文件中的图也不加载

(二)、tf.train.import_meta_graph

(1). 用来加载meta文件中的图,以及图上定义的结点参数包括权重偏置项等需要训练的参数,也包括训练过程生成的中间参数,所有参数都是通过graph调用接口get_tensor_by_name(name="训练时的参数名称")来获取

(三)、总结

(1). 保存使用tf.train.Saver()

(2). 加载可以使用tf.train.import_meta_graph(".meta文件"),直接通过训练参数名称就可以获取需要的参数,但需要提前知道训练时的参数名称才能获取,要懂得tensorflow命名规则

(3). tf.train.Saver("./checkpoints目录/")加载的缺点是只加载了训练参数,并且必须定义与之相同(shape,dtype要相同,tf.type要相同,如:我是placeholder,你也是tf.placeholder)方能使用,当你要获取训练中间参数时,需要和训练过程一样搭建相同的网络.

补充:tf.train.import_meta_graph报KeyError

我在模型恢复时,在执行tf.train.import_meta_graph的时候报错

后来发现,我的模型是在服务器上训练的,服务器上tensorflow版本是1.11.0,而我在本地电脑上执行的 tf.train.import_meta_graph,我本地的tensorflow是1.5.0,我将tensorflow更新到1.11.0后,就解决了。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • TensorFlow入门使用 tf.train.Saver()保存模型
  • Tensorflow之Saver的用法详解
  • TensorFlow Saver:保存和读取模型参数.ckpt实例

标签:长沙 海南 山西 山西 济南 喀什 崇左 安康

巨人网络通讯声明:本文标题《浅谈tf.train.Saver()与tf.train.import_meta_graph的要点》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266