主页 > 知识库 > Pytorch获取无梯度TorchTensor中的值

Pytorch获取无梯度TorchTensor中的值

热门标签:百度AI接口 语音系统 硅谷的囚徒呼叫中心 电话运营中心 客户服务 企业做大做强 Win7旗舰版 呼叫中心市场需求

获取无梯度Tensor

遇到的问题:

使用两个网络并行运算,一个网络的输出值要给另一个网络反馈。而反馈的输出值带有网络权重的梯度,即grad_fn=XXXBackward0>.

这时候如果把反馈值扔到第二网络中更新,会出现第一个计算图丢失无法更新的错误。哎哟喂,我根本不需要第一个网络的梯度好吗?

一开始用了一个笨办法,先转numpy,然后再转回torch.Tensor。因为numpy数据是不带梯度的。

但是我的原始tensor的放在cuda上的,

cuda的张量是不能直接转Tensor,所以

t_error = td_error.cuda().data.cpu().numpy()
t_error = torch.FloatTensor(t_error).to(device)

从cuda转回了cpu,变成numpy,又转成了tensor,又回到了cuda上,坑爹呢这是,可能只有我才能写出如此低效的辣鸡代码了。

后来发现,其实直接在返回的时候添加

with torch.no_grad():
 td_error = reward + GAMMA * v_ - v

即可.

补充:在pytorch中取一个tensor的均值,然后该张量中的所有值与其对比!

Pytorch中的Tensor的shape是(B, C, W, H),

对该tensor取均值并与所有值做对比代码如下:

C, H, W = tensor.shape[1], tensor.shape[2], tensor.shape[3]
for c in range(C):
 mean = torch.mean(x[0][c])
 for h in range(H):
  for w in range(W):
  if x[0][c][h][w] >= mean:
  x[0][c][h][w] = mean

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • 浅谈pytorch中为什么要用 zero_grad() 将梯度清零
  • PyTorch梯度裁剪避免训练loss nan的操作
  • PyTorch 如何自动计算梯度
  • pytorch 如何打印网络回传梯度
  • pytorch损失反向传播后梯度为none的问题
  • PyTorch 如何检查模型梯度是否可导

标签:崇左 喀什 山西 海南 济南 安康 长沙 山西

巨人网络通讯声明:本文标题《Pytorch获取无梯度TorchTensor中的值》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266