主页 > 知识库 > Pytorch 如何查看、释放已关闭程序占用的GPU资源

Pytorch 如何查看、释放已关闭程序占用的GPU资源

热门标签:富锦商家地图标注 沈阳人工外呼系统价格 武汉外呼系统平台 如何申请400电话费用 沈阳外呼系统呼叫系统 池州外呼调研线路 外呼系统哪些好办 江西省地图标注 沈阳防封电销卡品牌

看代码吧~

import torch 
print(torch.cuda.current_device())
print(torch.cuda.device_count())
print(torch.cuda.get_device_name())
print(torch.cuda.is_available())

打开terminal输入nvidia-smi可以看到当前各个显卡及用户使用状况,如下图所示,使用kill -9 pid(需替换成具体的编号)即可杀掉占用资源的程序,杀完后结果如下图所示,可以发现再也没有对应自己的程序了!

补充一下师弟帮忙的记录截图,方便以后查询使用:

补充:如何处理Pytorch使用GPU后仍有GPU资源未释放的情况

使用PyTorch设置多线程(threads)进行数据读取(DataLoader),其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以你的程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行

具体方法描述如下:

1.先关闭ssh(或者shell)窗口,退出重新登录

2.查看运行在gpu上的所有程序:

fuser -v /dev/nvidia*

3.kill掉所有(连号的)僵尸进程

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • PyTorch-GPU加速实例
  • Pytorch 搭建分类回归神经网络并用GPU进行加速的例子
  • pytorch 两个GPU同时训练的解决方案
  • 解决pytorch-gpu 安装失败的记录
  • Linux环境下GPU版本的pytorch安装
  • 如何判断pytorch是否支持GPU加速

标签:株洲 铜川 黑龙江 常德 通辽 阿里 吕梁 潜江

巨人网络通讯声明:本文标题《Pytorch 如何查看、释放已关闭程序占用的GPU资源》,本文关键词  Pytorch,如何,查看,释放,已,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Pytorch 如何查看、释放已关闭程序占用的GPU资源》相关的同类信息!
  • 本页收集关于Pytorch 如何查看、释放已关闭程序占用的GPU资源的相关信息资讯供网民参考!
  • 推荐文章