主页 > 知识库 > pandas:get_dummies()与pd.factorize()的用法及区别说明

pandas:get_dummies()与pd.factorize()的用法及区别说明

热门标签:外呼系统哪些好办 江西省地图标注 富锦商家地图标注 武汉外呼系统平台 沈阳防封电销卡品牌 沈阳外呼系统呼叫系统 沈阳人工外呼系统价格 如何申请400电话费用 池州外呼调研线路

1.get_dummies()

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None,sparse=False, drop_first=False):Convert categorical variable into dummy/indicator variables

>>> import pandas as pd
>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s)
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0

2.pd.factorize()

pandas.factorize(values, sort=False, order=None, na_sentinel=-1,size_hint=None):Encode input values as an enumerated type or categorical variable

Series.factorize(sort=False, na_sentinel=-1):Encode the object as an enumerated type or categorical variable

Pandas有一个方法叫做factorize(),它可以创建一些数字,来表示类别变量,对每一个类别映射一个ID,这种映射最后只生成一个特征,不像dummy那样生成多个特征。

Parameters:

sort : boolean, default False

Sort by values

na_sentinel: int, default -1

Value to mark “not found”

Returns:

labels : the indexer to the original array

uniques : the unique Index

labels:对应的编码array

uniques:需要编码的类型

补充:pandas.get_dummies 的使用及含义

get_dummies 是利用pandas实现one hot encode的方式

get_dummies参数如下:

pandas.get_dummies(data,prefix = None,prefix_sep ='_',dummy_na = False,columns = None,sparse = False,drop_first = False,dtype = None )

data : array-like,Series或DataFrame

prefix :string,字符串列表或字符串dict,默认为None,

用于追加DataFrame列名的字符串。在DataFrame上调用get_dummies时,传递一个长度等于列数的列表。或者,前缀 可以是将列名称映射到前缀的字典。

prefix_sep : string,默认为'_'

如果附加前缀,分隔符/分隔符要使用。或者传递与前缀一样的列表或字典。

dummy_na : bool,默认为False

如果忽略False NaN,则添加一列以指示NaN。

columns : 类似列表,默认为无

要编码的DataFrame中的列名称。如果列是None,那么所有与列 对象或类别 D型细胞将被转换。

sparse : bool,默认为False

伪编码列是否应由SparseArray(True)或常规NumPy数组(False)支持。

drop_first : bool,默认为False

是否通过删除第一级别从k分类级别获得k-1个假人。

版本0.18.0中的新功能。

dtype: D型,默认np.uint8

新列的数据类型。只允许一个dtype。

版本0.23.0中的新功能。

实例

prefix自定义前缀

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • pandas使用get_dummies进行one-hot编码的方法
  • Python使用Pandas库常见操作详解
  • Python pandas用法最全整理

标签:通辽 潜江 吕梁 黑龙江 铜川 常德 阿里 株洲

巨人网络通讯声明:本文标题《pandas:get_dummies()与pd.factorize()的用法及区别说明》,本文关键词  pandas,get,dummies,与,pd.factorize,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《pandas:get_dummies()与pd.factorize()的用法及区别说明》相关的同类信息!
  • 本页收集关于pandas:get_dummies()与pd.factorize()的用法及区别说明的相关信息资讯供网民参考!
  • 推荐文章