主页 > 知识库 > keras的get_value运行越来越慢的解决方案

keras的get_value运行越来越慢的解决方案

热门标签:公司电话机器人 陕西金融外呼系统 海南400电话如何申请 白银外呼系统 哈尔滨ai外呼系统定制 激战2地图标注 腾讯外呼线路 广告地图标注app 唐山智能外呼系统一般多少钱

keras 深度学习框架中get_value函数运行越来越慢,内存消耗越来越大问题

问题描述

如上图所示,经过时间和内存消耗跟踪测试,发现是keras.backend.get_value() 函数导致的程序越来越慢,而且严重的造成内存泄露;

查看该函数内部实现,发现一个主要核心是x.eval(session=get_session()),该语句可能是导致内存泄露和运行慢的核心语句; 根据查看一些博文得到了运行得越来越慢的

原因该x.eval函数会添加新的节点到tf的图中;而这也导致了tf的图越来越大,内存泄露;

解决方法

import tensorflow.keras.backend as K

def get_my_session(gpu_fraction=0.1):
    '''Assume that you have 6GB of GPU memory and want to allocate ~2GB'''

    num_threads = os.environ.get('OMP_NUM_THREADS')
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)

    if num_threads:
        return tf.Session(config=tf.ConfigProto(
            gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
    else:
        return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

K.set_session(get_my_session())

如上图所示, 我在使用tensorflow之前(也就是该工程文件前面),对session进行自定义,然后用自定义的session设定keras.backend.set_session();

然后删除get_value() 函数,直接用get_value()中所使用的执行语句x.eval(session=get_my_session());这样这个添加节点导致内存泄露的核心语句x.eval()就使用的是该工程统一自定义session,然后用tf.reset_default_graph() 对图重置就可以了

即上图问题代码修改为:

output = ctc_decode(y_pred,input_length=input_length,)
output = output[0][0]
out = output.eval(session=get_my_session())
# 删除 K.get_value(out[0][0])
tf.reset_default_graph() # 然后重置tf图,这句很关键

这样就解决了get_value()导致的越来越慢的问题;

个人认为:这样可能就不会总是添加新的节点,导致tf图不断地无限变大;而是重复使用这一个自定义的节点。

补充:tensorflow与keras之间版本问题引起get_session问题解决办法

1.产生报错原因

import tensorflow.keras.backend as K
def __init__(self, **kwargs):
    self.__dict__.update(self._defaults) # set up default values
    self.__dict__.update(kwargs) # and update with user overrides
    self.class_names = self._get_class()
    self.anchors = self._get_anchors()
    self.sess = K.get_session()

报错如下:

get_session is not available when using TensorFlow 2.0.

意思是 tf2.0 没有 get_session

2.解决方案1

import tensorflow.python.keras.backend as K
sess = K.get_session()

3. 解决方案2

import tensorflow as tf
sess = tf.compat.v1.keras.backend.get_session()

之前一直采用方案1 解决,感觉比较方便;但是解决方案1 有其它属性会丢失问题

比如AttributeError: module ‘keras.backend' has no attribute image_dim_ordering

所以建议大家采用方案2

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • keras修改backend的简单方法
  • 基于keras中训练数据的几种方式对比(fit和fit_generator)
  • 浅谈Keras中fit()和fit_generator()的区别及其参数的坑
  • Keras保存模型并载入模型继续训练的实现
  • TensorFlow2.0使用keras训练模型的实现
  • tensorflow2.0教程之Keras快速入门
  • 浅析关于Keras的安装(pycharm)和初步理解
  • 基于Keras的扩展性使用

标签:惠州 黑龙江 上海 四川 益阳 常德 黔西 鹰潭

巨人网络通讯声明:本文标题《keras的get_value运行越来越慢的解决方案》,本文关键词  keras,的,get,value,运行,越来,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《keras的get_value运行越来越慢的解决方案》相关的同类信息!
  • 本页收集关于keras的get_value运行越来越慢的解决方案的相关信息资讯供网民参考!
  • 推荐文章