主页 > 知识库 > 详解python的内存分配机制

详解python的内存分配机制

热门标签:帮人做地图标注收费算诈骗吗 江苏房产电销机器人厂家 电信营业厅400电话申请 温州旅游地图标注 悟空智电销机器人6 苏州电销机器人十大排行榜 荆州云电销机器人供应商 外呼不封号系统 辽宁400电话办理多少钱

开始

作为一个实例,让我们创建四个变量并为其赋值:

variable1 = 1
variable2 = "abc"
variable3 = (1,2)
variable4 = ['a',1]

#打印他们的ids
print('Variable1: ', id(variable1))
print('Variable2: ', id(variable2))
print('Variable3: ', id(variable3))
print('Variable4: ', id(variable4))

打印结果如下所示:

变量1:1747938368
变量2:152386423976
变量3:152382712136
变量4:152382633160

每个变量都被分配了一个新的内存地址(以整数形式表示)。第一个假设是,每当我们使用“ =”给变量赋值时,Python都会创建一个新的内存地址来存储变量。这是100%正确的吗?当然不是!

我将创建两个新变量(5和6)并使用现有变量的值给它们赋值。

variable5 = variable1
variable6 = variable4

print('Variable1: ', id(variable1))
print('Variable4: ', id(variable4))
print('Variable5: ', id(variable5))
print('Variable6: ', id(variable6))

Python打印结果:

变量1:1747938368
变量4:819035469000
变量5:1747938368
变量6:819035469000

你注意到,Python并未为这两个变量创建新的内存地址吗?这次,它只是把两个新变量都指向了现有变量相同的存储位置。

现在让我们为变量1设置一个新值。注意:整数是不可变数据类型。

print('Variable1: ', id(variable1))
variable1 = 2
print('Variable1: ', id(variable1))

这将打印:

Variable1: 1747938368
Variable1: 1747938400

这意味着每当我们使用=并将新值给现有变量赋值时,就会在内部创建一个新的内存地址来存储该变量。让我们看看它是否成立!

当值是可变数据类型时会发生什么?variable6是一个列表,让我们在列表结尾append一个值并打印其内存地址:

print('Variable6:',id(variable6))
variable6.append('new')
print('Variable6:',id(variable6))

请注意,变量的内存地址保持不变,因为它是可变数据类型,我们仅更新了其元素。

Variable6:678181106888
Variable6:678181106888

让我们创建一个函数并将一个变量传递给它。如果我们在函数内部设置变量的值,它会发生什么?让我们评估一下。

def update_variable(variable_to_update):
    print(id(variable_to_update))
update_variable(variable6)
print('Variable6: ', id(variable6))

请注意,variable_to_update的ID指向变量6的ID。

这意味着如果我们在函数中更新variable_to_update且variable_to_update是可变数据类型,那么variable6的值将更新。我们看一个具体例子:

variable6 = ['new']
print('Variable6: ', variable6)

def update_variable(variable_to_update):
    variable_to_update.append('inside')
update_variable(variable6)
print('Variable6: ', variable6)

这将打印:

Variable6:['new']
Variable6:['new','inside']

它向我们展示了如何在函数中的更新一个可变的变量,你可以看到函数类和函数外的可变变量都具有相同的ID。

如果我们在函数内给变量赋一个新值(而不是更新),无论它是不可变的还是可变的数据类型,那么一旦退出函数,更改将丢失:

print('Variable6: ', variable6)

def update_variable(variable_to_update):
    print(id(variable_to_update))
    variable_to_update = ['inside']
update_variable(variable6)
print('Variable6: ', variable6)

Variable6:['new']
344115201992
Variable6:['new']

现在是一个有趣的场景:Python并不总是为所有新变量创建一个新的内存地址。

最后,如果我们为两个不同的变量分配一个字符串值,例如“ a”,该怎么办?它会创建两个内存地址吗?

variable_nine ="a"
variable_ten ="a"
print('Variable9:',id(variable_nine))
print('Variable10:',id(variable_ten))

注意,这两个变量具有相同的内存位置:

Variable9:792473698064
Variable10:792473698064

如果我们创建两个不同的变量并为其分配一个长字符串值,该怎么办:

variable_nine = "a" * 21
variable_ten = "a" * 21
print('Variable9: ', id(variable_nine))
print('Variable10: ', id(variable_ten))

这次Python为两个变量创建了两个不同内存位置:

Variable9:541949933872
Variable10:541949933944

为什么? 这是因为Python启动时会创建一个内部值缓存,这样做是为了提供更快的结果。Python会为少量整数(如-5到256之间)和较小的字符串值分配了少量的内存地址。这就是我们示例中的短字符串都具有相同ID的原因,而长字符串的ID则不同。

== vs是

有时我们想检查两个对象是否相等。

  • 如果我们使用==,它将检查两个参数是否包含相同的数据
  • 如果我们使用is,那么Python将检查两个对象是否引用相同的对象,此时两个对象的id必须相同
var1 = "a" * 30 
var2 = "a" * 30 
print('var1:',id(var1))#318966315648 
print('var2:',id(var2))#168966317364 

print('==:', var1 == var2)#返回True 
print('is:',var1 is var2)#返回False

以上就是详解python的内存分配机制的详细内容,更多关于python 内存分配机制的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • Python使用__new__()方法为对象分配内存及返回对象的引用示例
  • 关于Python内存分配时的小秘密分享
  • python内存动态分配过程详解
  • python3使用迭代生成器实现减少内存占用
  • 用python监控服务器的cpu,磁盘空间,内存,超过邮件报警
  • Python 内存管理机制全面分析
  • 总结python 三种常见的内存泄漏场景
  • Python numpy大矩阵运算内存不足如何解决
  • Python获取android设备cpu和内存占用情况
  • python和C++共享内存传输图像的示例
  • Python内存泄漏和内存溢出的解决方案

标签:三沙 景德镇 钦州 济南 喀什 黄山 台湾 宿迁

巨人网络通讯声明:本文标题《详解python的内存分配机制》,本文关键词  详解,python,的,内存,分配,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《详解python的内存分配机制》相关的同类信息!
  • 本页收集关于详解python的内存分配机制的相关信息资讯供网民参考!
  • 推荐文章