主页 > 知识库 > Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)

Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)

热门标签:电话机器人贷款诈骗 京华图书馆地图标注 佛山通用400电话申请 看懂地图标注方法 淮安呼叫中心外呼系统如何 打印谷歌地图标注 电话外呼系统招商代理 广东旅游地图标注 苏州人工外呼系统软件

斐波那契数列

首先我们来定义一下斐波那契数列:

即数列的第0项:

算法一:递归

递归计算的节点个数是O(2ⁿ)的级别的,效率很低,存在大量的重复计算。

比如:

f(10) = f(9) + f(8)

f(9) = f(8) + f(7) 重复 8

f(8) = f(7) + f(6) 重复 7

时间复杂度是O(2ⁿ),极慢

def F1(n):
    if n = 1: return max(n, 0)  # 前两项
    return F1(n-1)+F1(n-2)  # 递归

算法二:记忆化搜索

开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。

总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。但由于是递归计算,递归层数太多会爆栈。

res = [None]*100000
def F2(n):
    if n = 1: return max(n, 0)
    if res[n]: return res[n]  # 如果已存在则直接查找返回结果
    res[n] = F2(n-1)+F2(n-2)  # 不存在则计算
    return res[n]

算法三:递推

开一个大数组,记录每个数的值。用循环递推计算。

总共计算 n 个状态,所以时间复杂度是 O(n)。但需要开一个长度是 n 的数组,内存将成为瓶颈。

def F3(n):
    if n = 1: return max(n, 0)
    res = [0, 1]
    for i in range(2,n+1):
        res.append(res[i-1]+res[i-2])
    return res[n]

算法四:递归+滚动变量

比较优秀的一种解法。仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。

时间复杂度还是 O(n),但空间复杂度变成了O(1)。

def F4(n):
    if n = 1: return max(n, 0)
    fn, f0, f1 = 0, 1, 0  # fn为最终结果,f0为第0项,f1为第一项,
    for i in range(2, n+1):
        fn = f0 + f1  # 前两项和
        f0, f1 = f1, fn  # 递推变量
    return fn

算法五:矩阵乘法+快速幂

利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。

先说通式:

利用数学归纳法证明:

这里的a0,a1,a2是对应斐波那契的第几项

证毕。

所以我们想要的得到An,只需要求得Aⁿ,然后取第一行第二个元素即可。

如果只是简单的从0开始循环求n次方,时间复杂度仍然是O(n),并不比前面的快。我们可以考虑乘方的如下性质,即快速幂:

这样只需要 logn 次运算即可得到结果,时间复杂度为 O(logn)

def mul(a, b):  # 首先定义二阶矩阵乘法运算
    c = [[0, 0], [0, 0]]  # 定义一个空的二阶矩阵,存储结果
    for i in range(2):  # row
        for j in range(2):  # col
            for k in range(2):  # 新二阶矩阵的值计算
                c[i][j] += a[i][k] * b[k][j]
    return c
def F5(n):
    if n = 1: return max(n, 0)
    res = [[1, 0], [0, 1]]  # 单位矩阵,等价于1
    A = [[1, 1], [1, 0]]  # A矩阵
    while n:
        if n  1: res = mul(res, A)  # 如果n是奇数,或者直到n=1停止条件
        A = mul(A, A)  # 快速幂
        n >>= 1  # 整除2,向下取整
    return res[0][1]

总的来说不是很难,适合扩展思路。更多关于Python的资料请关注脚本之家其它相关文章!希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python:合并两个numpy矩阵的实现
  • python实现由数组生成对称矩阵
  • Python 如何求矩阵的逆
  • python用分数表示矩阵的方法实例
  • Python numpy大矩阵运算内存不足如何解决
  • Python计算矩阵的和积的实例详解
  • python 如何将两个实数矩阵合并为一个复数矩阵

标签:中山 湖州 呼和浩特 股票 毕节 衡水 驻马店 江苏

巨人网络通讯声明:本文标题《Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)》,本文关键词  Python,实现,求解,斐波,那契,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)》相关的同类信息!
  • 本页收集关于Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)的相关信息资讯供网民参考!
  • 推荐文章