主页 > 知识库 > 使用pytorch实现线性回归

使用pytorch实现线性回归

热门标签:电话机器人贷款诈骗 京华图书馆地图标注 淮安呼叫中心外呼系统如何 广东旅游地图标注 看懂地图标注方法 打印谷歌地图标注 电话外呼系统招商代理 佛山通用400电话申请 苏州人工外呼系统软件

本文实例为大家分享了pytorch实现线性回归的具体代码,供大家参考,具体内容如下

线性回归都是包括以下几个步骤:定义模型、选择损失函数、选择优化函数、 训练数据、测试

import torch
import matplotlib.pyplot as plt
# 构建数据集
x_data= torch.Tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0]])
y_data= torch.Tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0]])
#定义模型
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear= torch.nn.Linear(1,1) #表示输入输出都只有一层,相当于前向传播中的函数模型,因为我们一般都不知道函数是什么形式的
 
    def forward(self, x):
        y_pred= self.linear(x)
        return y_pred
model= LinearModel()
# 使用均方误差作为损失函数
criterion= torch.nn.MSELoss(size_average= False)
#使用梯度下降作为优化SGD
# 从下面几种优化器的生成结果图像可以看出,SGD和ASGD效果最好,因为他们的图像收敛速度最快
optimizer= torch.optim.SGD(model.parameters(),lr=0.01)
# ASGD
# optimizer= torch.optim.ASGD(model.parameters(),lr=0.01)
# optimizer= torch.optim.Adagrad(model.parameters(), lr= 0.01)
# optimizer= torch.optim.RMSprop(model.parameters(), lr= 0.01)
# optimizer= torch.optim.Adamax(model.parameters(),lr= 0.01)
# 训练
epoch_list=[]
loss_list=[]
for epoch in range(100):
    y_pred= model(x_data)
    loss= criterion(y_pred, y_data)
    epoch_list.append(epoch)
    loss_list.append(loss.item())
    print(epoch, loss.item())
 
    optimizer.zero_grad() #梯度归零
    loss.backward()  #反向传播
    optimizer.step() #更新参数
 
print("w= ", model.linear.weight.item())
print("b= ",model.linear.bias.item())
 
x_test= torch.Tensor([[7.0]])
y_test= model(x_test)
print("y_pred= ",y_test.data)
 
plt.plot(epoch_list, loss_list)
plt.xlabel("epoch")
plt.ylabel("loss_val")
plt.show()

使用SGD优化器图像:                                                      

使用ASGD优化器图像:

使用Adagrad优化器图像:                                                 

使用Adamax优化器图像:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • python深度总结线性回归
  • tensorflow基本操作小白快速构建线性回归和分类模型
  • 回归预测分析python数据化运营线性回归总结
  • python实现线性回归算法
  • python机器学习之线性回归详解
  • pytorch实现线性回归
  • 详解TensorFlow2实现前向传播

标签:湖州 中山 呼和浩特 股票 毕节 衡水 江苏 驻马店

巨人网络通讯声明:本文标题《使用pytorch实现线性回归》,本文关键词  使用,pytorch,实现,线性,回归,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《使用pytorch实现线性回归》相关的同类信息!
  • 本页收集关于使用pytorch实现线性回归的相关信息资讯供网民参考!
  • 推荐文章