主页 > 知识库 > python 使用Yolact训练自己的数据集

python 使用Yolact训练自己的数据集

热门标签:企业做大做强 硅谷的囚徒呼叫中心 语音系统 客户服务 百度AI接口 Win7旗舰版 呼叫中心市场需求 电话运营中心

可能是由于yolact官方更新过其项目代码,所以网上其他人的yolact训练使用的config文件和我的稍微有区别。但总体还是差不多的。

1:提前准备好自己的数据集

使用labelme来制作分割数据集,但是得到的是一个个单独的json文件。需要将其转换成coco。
labelme2coco.py如下所示(代码来源:github链接):

import os
import json
import numpy as np
import glob
import shutil
from sklearn.model_selection import train_test_split
np.random.seed(41)

#0为背景,此处根据你数据集的类别来修改key
classname_to_id = {"1": 1}

class Lableme2CoCo:

 def __init__(self):
  self.images = []
  self.annotations = []
  self.categories = []
  self.img_id = 0
  self.ann_id = 0

 def save_coco_json(self, instance, save_path):
  json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1) # indent=2 更加美观显示

 # 由json文件构建COCO
 def to_coco(self, json_path_list):
  self._init_categories()
  for json_path in json_path_list:
   obj = self.read_jsonfile(json_path)
   self.images.append(self._image(obj, json_path))
   shapes = obj['shapes']
   for shape in shapes:
    annotation = self._annotation(shape)
    self.annotations.append(annotation)
    self.ann_id += 1
   self.img_id += 1
  instance = {}
  instance['info'] = 'spytensor created'
  instance['license'] = ['license']
  instance['images'] = self.images
  instance['annotations'] = self.annotations
  instance['categories'] = self.categories
  return instance

 # 构建类别
 def _init_categories(self):
  for k, v in classname_to_id.items():
   category = {}
   category['id'] = v
   category['name'] = k
   self.categories.append(category)

 # 构建COCO的image字段
 def _image(self, obj, path):
  image = {}
  from labelme import utils
  img_x = utils.img_b64_to_arr(obj['imageData'])
  h, w = img_x.shape[:-1]
  image['height'] = h
  image['width'] = w
  image['id'] = self.img_id
  image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
  return image

 # 构建COCO的annotation字段
 def _annotation(self, shape):
  label = shape['label']
  points = shape['points']
  annotation = {}
  annotation['id'] = self.ann_id
  annotation['image_id'] = self.img_id
  annotation['category_id'] = int(classname_to_id[label])
  annotation['segmentation'] = [np.asarray(points).flatten().tolist()]
  annotation['bbox'] = self._get_box(points)
  annotation['iscrowd'] = 0
  annotation['area'] = 1.0
  return annotation

 # 读取json文件,返回一个json对象
 def read_jsonfile(self, path):
  with open(path, "r", encoding='utf-8') as f:
   return json.load(f)

 # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
 def _get_box(self, points):
  min_x = min_y = np.inf
  max_x = max_y = 0
  for x, y in points:
   min_x = min(min_x, x)
   min_y = min(min_y, y)
   max_x = max(max_x, x)
   max_y = max(max_y, y)
  return [min_x, min_y, max_x - min_x, max_y - min_y]


if __name__ == '__main__':
 labelme_path = "labelme/" # 此处根据你的数据集地址来修改
 saved_coco_path = "./"
 # 创建文件
 if not os.path.exists("%scoco/annotations/"%saved_coco_path):
  os.makedirs("%scoco/annotations/"%saved_coco_path)
 if not os.path.exists("%scoco/images/train2017/"%saved_coco_path):
  os.makedirs("%scoco/images/train2017"%saved_coco_path)
 if not os.path.exists("%scoco/images/val2017/"%saved_coco_path):
  os.makedirs("%scoco/images/val2017"%saved_coco_path)
 # 获取images目录下所有的joson文件列表
 json_list_path = glob.glob(labelme_path + "/*.json")
 # 数据划分,这里没有区分val2017和tran2017目录,所有图片都放在images目录下
 train_path, val_path = train_test_split(json_list_path, test_size=0.12)
 print("train_n:", len(train_path), 'val_n:', len(val_path))

 # 把训练集转化为COCO的json格式
 l2c_train = Lableme2CoCo()
 train_instance = l2c_train.to_coco(train_path)
 l2c_train.save_coco_json(train_instance, '%scoco/annotations/instances_train2017.json'%saved_coco_path)
 for file in train_path:
  shutil.copy(file.replace("json","jpg"),"%scoco/images/train2017/"%saved_coco_path)
 for file in val_path:
  shutil.copy(file.replace("json","jpg"),"%scoco/images/val2017/"%saved_coco_path)

 # 把验证集转化为COCO的json格式
 l2c_val = Lableme2CoCo()
 val_instance = l2c_val.to_coco(val_path)
 l2c_val.save_coco_json(val_instance, '%scoco/annotations/instances_val2017.json'%saved_coco_path)

只需要修改两个地方即可,然后放到data文件夹下。
最后,得到的coco格式的数据集如下所示:

至此,数据准备已经结束。

2:下载github存储库

网址:YOLACT

之后解压,但是我解压的时候不知道为啥没有yolact.py这个文件。后来又建了一个py文件,复制了里面的代码。

下载权重文件,把权重文件放到yolact-master下的weights文件夹里(没有就新建):

3:修改config.py

文件所在位置:

修改类别,把原本的coco的类别全部注释掉,修改成自己的(如红色框),注意COCO_CLASSES里有一个逗号。

修改数据集地址dataset_base

修改coco_base_config(下面第二个横线max_iter并不是控制训练轮数的,第二张图中的max_iter才是)

4:训练

cd到指定路径下,执行下面命令即可

python train.py --config=yolact_base_config

刚开始:

因为我是租的云服务器,在jupyter notebook里训练的。输出的训练信息比较乱。

训练几分钟后:

主要看T后面的数字即可,好像他就是总的loss,如果它收敛了,按下Ctrl+C,即可中止训练,保存模型权重。

第一个问题:

PytorchStreamReader failed reading zip archive: failed finding central directory

第二个问题:
(但是不知道为啥,我训练时如果中断,保存的模型不能用来测试,会爆出下面的错误)

RuntimeError: unexpected EOF, expected *** more bytes. The file might be corruptrd

没办法解决,所以只能跑完,自动结束之后保存的模型拿来测试(自动保存的必中断保存的要大十几兆)

模型保存的格式:config>_epoch>_iter>.pth。如果是中断的:config>_epoch>_iter>_interrupt.pth

5:测试

使用官网的测试命令即可

以上就是python 使用Yolact训练自己的数据集的详细内容,更多关于python 训练数据集的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • 如何用 Python 处理不平衡数据集
  • python实现将两个文件夹合并至另一个文件夹(制作数据集)
  • python实现提取COCO,VOC数据集中特定的类
  • python KNN算法实现鸢尾花数据集分类
  • python Pandas如何对数据集随机抽样
  • python调用摄像头拍摄数据集
  • python实现多层感知器MLP(基于双月数据集)
  • Python 统计数据集标签的类别及数目操作

标签:喀什 山西 济南 崇左 长沙 安康 海南 山西

巨人网络通讯声明:本文标题《python 使用Yolact训练自己的数据集》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266