输入各种特征值聚堆与分散时的矩阵,并应用共轭梯度法,观察迭代次数与聚堆情况的关系。
因为对角矩阵的对角线元素为其特征值,则用对角矩阵讨论较为方便
代码
import numpy as np def cg(x0, A, b): r0 = np.dot(A, x0) - b p0 = -r0 rk = r0 pk = p0 xk = x0 t = 0 #记录迭代次数 while np.linalg.norm(rk) >= 1e-6: rr = np.dot(rk.T, rk) ak = rr / np.dot(np.dot(pk.T, A), pk) xk = xk + ak * pk rk = rk + ak * np.dot(A, pk) bk = np.dot(rk.T, rk) / rr pk = -rk + bk * pk t += 1 return xk, t #输入列表,生成以列表为对角元素的对角矩阵 def Diagonal_matrix(D): n = len(D) diag = np.zeros((n,n)) for i in range(n): diag[i][i] = D[i] return diag #矩阵对角线元素 D_1 = [1, 1, 1, 1, 1, 6, 7, 8, 9, 10] D_2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] D_3 = [0.8, 0.9, 1, 1.1, 1.2, 6, 7, 8, 9, 10] D_4 = [1 - 2*1e-7, 1 - 1e-7, 1, 1 + 1e-7, 1 + 2*1e-7, 6, 7, 8, 9, 10] D_5 = [1, 1, 1, 2, 2, 2, 3, 3, 3, 10] #初始值 x0 = np.zeros((10,1)) b = np.ones((10,1)) #生成对角矩阵 diag1 = Diagonal_matrix(D_1) diag2 = Diagonal_matrix(D_2) diag3 = Diagonal_matrix(D_3) diag4 = Diagonal_matrix(D_4) diag5 = Diagonal_matrix(D_5) #共轭梯度法迭代 x_1, n_1 = cg(x0, diag1, b) x_2, n_2 = cg(x0, diag2, b) x_3, n_3 = cg(x0, diag3, b) x_4, n_4 = cg(x0, diag4, b) x_5, n_5 = cg(x0, diag5, b) n = [n_1, n_2, n_3, n_4, n_5] #输出 for i in range(5): print('矩阵',i + 1 ,'的迭代次数为: ', n[i])
矩阵1,前5个元素聚堆且都为相同元素
矩阵2,特征值分散
矩阵3,前5个特征值聚堆,但是最大差为0.4 ,而cg法精度为1e-6
矩阵4,前5个特征值聚堆,且相差最大小于1e-6
矩阵5,三聚堆
输出:
分析:
以上就是python共轭梯度法特征值迭代次数讨论的详细内容,更多关于python共轭梯度法迭代的资料请关注脚本之家其它相关文章!