主页 > 知识库 > pandas中.loc和.iloc以及.at和.iat的区别说明

pandas中.loc和.iloc以及.at和.iat的区别说明

热门标签:硅谷的囚徒呼叫中心 百度AI接口 Win7旗舰版 语音系统 呼叫中心市场需求 企业做大做强 客户服务 电话运营中心

显示索引和隐式索引

import pandas as pd
df = pd.DataFrame({'姓名':['张三','李四','王五'],'成绩':[85,59,76]})

传入冒号‘:',表示所有行或者列

显示索引:.loc,第一个参数为 index切片,第二个为 columns列名

df.loc[2] #index为2的记录,这里是王五的成绩。
df.loc[:,'姓名'] #第一个参数为冒号,表示所有行,这里是筛选姓名这列记录。

隐式索引:.iloc(integer_location), 只能传入整数。

df.iloc[:2,:] #张三和李四的成绩,跟列表切片一样,冒号左闭右开。
df.iloc[:,'成绩'] #输入中文,这里就报错了,只能使用整数。

也可以使用at定位到某个元素

语法规则:df.at[index,columns]

df.at[1,'成绩'] #使用索引标签,李四的成绩
df.iat[1,1] #类似于iloc使用隐式索引访问某个元素

补充:pandas快速定位某一列中存在某值的所有行,loc, at, ==对比

如下所示:

goodDiskName2016
from datetime import datetime
from time import time

直接方括号定位相等的列

start = time()
for disk in goodDiskName2016[:100]:
   ____ST4000DM000_2016_good_feature27[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start

消耗时间

82.93997383117676

直接loc定位相等的

start = time()
for disk in goodDiskName2016[:100]:  ____ST4000DM000_2016_good_feature27.loc[ST4000DM000_2016_good_feature27.serial_number==disk][features27[0]]
time()-start

消耗时间:

82.4887466430664

先将这一列设置为index,然后通过loc查找

b = ST4000DM000_2016_good_feature27.set_index('serial_number')
start = time()
for disk in goodDiskName2016[:100]:
 b.loc[disk][features27[0]]
time()-start

消耗时间:

25.706212759017944

设置为index后用at定位

start = time()
for disk in goodDiskName2016[:100]:
 b.at[disk,features27[0]]
time()-start

消耗时间:

25.67607021331787

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

您可能感兴趣的文章:
  • Python基础之pandas数据合并
  • python-pandas创建Series数据类型的操作
  • Python数据分析之pandas函数详解
  • python基于Pandas读写MySQL数据库
  • pandas读取excel时获取读取进度的实现
  • 浅谈Pandas dataframe数据处理方法的速度比较
  • 解决使用pandas聚类时的小坑
  • pandas 使用merge实现百倍加速的操作
  • 详细介绍在pandas中创建category类型数据的几种方法
  • python中pandas.read_csv()函数的深入讲解
  • pandas 颠倒列顺序的两种解决方案
  • pandas调整列的顺序以及添加列的实现
  • pandas快速处理Excel,替换Nan,转字典的操作
  • Python基础之教你怎么在M1系统上使用pandas

标签:山西 崇左 山西 海南 长沙 济南 喀什 安康

巨人网络通讯声明:本文标题《pandas中.loc和.iloc以及.at和.iat的区别说明》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266