好几个月没有写笔记了, 并非没有积累, 而是有点懒了. 想想还是要续上, 作为工作成长的一部分哦.
最近有做一些报表, 但一直找不到一个合适的报表工具, 又实在不想写前端, 后端... 思来想去, 感觉 Excel 就一定程度上能做可视化的, 除了不能动态交互外, 其他都挺好. 今天分享的就是一个关于如何用 Py 来自动化Excel 报表, 解放双手, 提高工作效率哦.
当然是测试用的假数据啦.
import pandas as pd
import xlwings as xw
import pymssql
# 各品类月同期
def get_last_year_sale(start_date, end_date):
"""各品类同期销量, 对比19年"""
sql_01 = f"""
SELECT
品类
, SUM(数量) AS QTY
FROM XXX
WHERE 是否电商 = 1
AND 销售时间 BETWEEN DATEADD(YEAR, -2, '{start_date}') AND DATEADD(YEAR, -2, '{end_date}')
GROUP BY 品类
"""
df = pd.read_sql(sql_01, con=con)
df_xtc = df[df['品类'] == 'A品类'][['品类', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['品类', 'QTY']]
return df_xtc, df_bbk
def get_anget_sale(start_date, end_date):
"""返回各品类, 各区域的时间段销量"""
sql = f"""
SELECT
品类
, AGENT
, SUM(数量) AS QTY
, ROW_NUMBER()OVER(PARTITION BY 品类 ORDER BY SUM(数量) DESC) MY_RANK
FROM XXX
WHERE 是否电商 = 1
AND 销售时间 BETWEEN '{start_date}' AND '{end_date}'
GROUP BY AGENT, 品类
"""
df = pd.read_sql(sql, con=con)
df_xtc = df[df['品类'] == 'A品类'][['AGENT', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['AGENT', 'QTY']]
df_pad = df[df['品类'] == 'C品类'][['AGENT', 'QTY']]
return df_xtc, df_bbk, df_pad
def get_machine_sale(start_date, end_date):
"""返回各品类, 各区域的时间段销量"""
sql = f"""
SELECT
品类
, 机型
, SUM(数量) AS QTY
, ROW_NUMBER()OVER(PARTITION BY 品类 ORDER BY SUM(数量) DESC) MY_RANK
FROM V_REALSALE
WHERE 是否电商 = 1
AND 销售时间 BETWEEN '{start_date}' AND '{end_date}'
GROUP BY 机型, 品类
"""
df = pd.read_sql(sql, con=con)
df_xtc = df[df['品类'] == 'A品类'][['机型', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['机型', 'QTY']]
return df_xtc, df_bbk
# main
con = pymssql.connect('xxxxx', 'sxxx', 'xxxxxx', 'xxxxx')
# 基础配置: 根据用户输入当前日期, 输出当月, 当季度第一天
print("欢迎哦, 此小程序专门为XX看板做数据自动更新呢~")
print()
today = input("请输入截止日期(昨天), 形如: 2021/5/20 按回车结束: ")
if len(today.split('/')) != 3:
raise "日期格式输入错误!!, 请按照形如 '2021/5/20'的格式重新输入"
else:
m_cur = today.split('/')[1]
m_first_day = '2021/' + m_cur + '/1'
# 季度第一天
if m_cur in ('1', '01', '2', '02', '3', '03'):
q_time_start = '2021/1/1'
elif m_cur in ('4', '04', '5', '05', '6', '06'):
q_time_start = '2021/4/1'
elif m_cur in ('7', '07', '8', '08', '9', '09'):
q_time_start = '2021/7/1'
else:
q_time_start = '2021/10/1'
print()
print("正在开始更新....")
print("提示, 接下看到闪退, 是正常现象, 就程序模拟人去打开文件, 填充数据, 不要紧张哦~~~")
# 去年月, 季度同期
df_mm_xtc, df_mm_bbk = get_last_year_sale(m_first_day, today)
df_qq_xtc, df_qq_bbk = get_last_year_sale(q_time_start, today)
# 当月各地区累积销量
df_m_xtc, df_m_bbk, df_m_pad = get_anget_sale(m_first_day, today)
# 各地区当季度销量
df_q_xtc, df_q_bbk, df_q_pad = get_anget_sale(q_time_start, today)
# 各机型当季度销量
df_q_type_xtc, df_q_type_bbk = get_machine_sale(q_time_start, today)
# 过滤掉 销量为0的型号
df_q_type_xtc = df_q_type_xtc[df_q_type_xtc.QTY > 0]
df_q_type_xtc.replace('Z6áÛ·å°æ', 'Z6巅峰版', inplace=True)
df_q_type_bbk = df_q_type_bbk[df_q_type_bbk.QTY > 0]
# 打开excel 模板 等待数据填充
app = xw.App(visible=True, add_book=False)
app.display_alerts = False # 关闭一些提示信息,可以加快运行速度。 默认为 True。
app.screen_updating = True
wb = app.books.open("XXX_全品类_看板.xlsx")
data_sht = wb.sheets['数据']
# 19年当月同期销量
data_sht.range('B9').value = df_mm_xtc.values
data_sht.range('G9').value = df_mm_bbk.values
# 当季度同比
data_sht.range('B10').value = df_qq_xtc.values
data_sht.range('G10').value = df_qq_bbk.values
# 填充各品类当月销量, 注意单元格是写死的哦
data_sht.range('I72').value = df_m_xtc.values
data_sht.range('T72').value = df_m_bbk.values
data_sht.range('AE72').value = df_m_pad.values
# 填充当季度销量, 同理是写死的
data_sht.range('A54').value = df_q_xtc.values
data_sht.range('F54').value = df_q_bbk.values
data_sht.range('K54').value = df_q_pad.values
# 填充当季度各型号, 同理是写死的
data_sht.range('A21').value = df_q_type_xtc.values
data_sht.range('F21').value = df_q_type_bbk.values
wb.save()
app.quit()
print()
print("~~更新结束了哦~~")
print()
input("请按任意键退出~~")
print()
print('BYE~~ 人生若只如初见呢~~')
最好用一个纯净的 虚拟环境打包.
然后进入脚本目录下, 进行打包哦.
打包成功后的样子.
双击运行即可哦.
这时候再重新打开该目录下的 Excel 模板, 发现数据已经自动更新了.