在对excel的操作中,调整列的顺序以及添加一些列也是经常用到的,下面我们用pandas实现这一功能。
1、调整列的顺序
>>> df = pd.read_excel(r'D:/myExcel/1.xlsx')
>>> df
A B C D
0 bob 12 78 87
1 millor 15 92 21
>>> df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')
# 这是最简单常用的一种方法,相当于指定列名让pandas
# 从df中获取
>>> df[['A', 'D', 'C', 'B']]
A D C B
0 bob 87 78 12
1 millor 21 92 15
# 这也是可以的
>>> df[['A', 'A', 'A', 'A']]
A A A A
0 bob bob bob bob
1 millor millor millor millor
2、添加某一列或者某几列
(1)直接添加
>>> df['E']=[1, 2]
>>> df
A B C D E
0 bob 12 78 87 1
1 millor 15 92 21 2
(2)调用assign方法。该方法善于根据已有的列添加新的列,通过基本运算,或者调用函数
>>> df
A B C D
0 bob 12 78 87
1 millor 15 92 21
# 其中E是列名,根据B列-C列的值得到
>>> df.assign(E=df['B'] - df['C'])
A B C D E
0 bob 12 78 87 -66
1 millor 15 92 21 -77
# 添加两列也可以
>>> df.assign(E=df['B'] - df['C'], F=df['B'] * df['C'])
A B C D E F
0 bob 12 78 87 -66 936
1 millor 15 92 21 -77 1380
哈哈,以上就是pandas关于调整列的顺序以及新增列的用法
补充:pandas修改DataFrame中的列名调整列的顺序
修改列名:
直接调用接口:
看一下接口中的定义:
def rename(self, *args, **kwargs):
"""
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide basics.rename>` for more.
Parameters
----------
mapper, index, columns : dict-like or function, optional
dict-like or functions transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
axis : int or str, optional
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new DataFrame. If True then value of copy is
ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
Returns
-------
renamed : DataFrame
See Also
--------
pandas.DataFrame.rename_axis
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B
0 1 4
1 2 5
2 3 6
Using axis-style parameters
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
"""
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
kwargs.update(axes)
# Pop these, since the values are in `kwargs` under different names
kwargs.pop('axis', None)
kwargs.pop('mapper', None)
return super(DataFrame, self).rename(**kwargs)
注意:
一个*,输入可以是数组、元组,会把输入的数组或元组拆分成一个个元素。
两个*,输入必须是字典格式
示例:
>>>import pandas as pd
>>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
>>> a
A B C
0 1 4 7
1 2 5 8
2 3 6 9
#将列名A替换为列名a,B改为b,C改为c
>>>a.rename(columns={'A':'a', 'B':'b', 'C':'c'}, inplace = True)
>>>a
a b c
0 1 4 7
1 2 5 8
2 3 6 9
调整列的顺序:
如:
>>> import pandas
>>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],
'mark_date':['2017-03-07','2017-03-07','2017-03-07']}
>>> df = pandas.DataFrame(dict_a) # 从字典创建DataFrame
>>> df # 创建好的df列名默认按首字母顺序排序,和字典中的先后顺序并不一样,字典中'user_id','book_id','rating','mark_date'
book_id mark_date rating user_id
0 3713327 2017-03-07 4 webbang
1 4074636 2017-03-07 4 webbang
2 26873486 2017-03-07 4 webbang
直接修改列名:
>>> df = df[['user_id','book_id','rating','mark_date']] # 调整列顺序为'user_id','book_id','rating','mark_date'
>>> df
user_id book_id rating mark_date
0 webbang 3713327 4 2017-03-07
1 webbang 4074636 4 2017-03-07
2 webbang 26873486 4 2017-03-07
就可以了。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
您可能感兴趣的文章:- Python基础之pandas数据合并
- python-pandas创建Series数据类型的操作
- Python数据分析之pandas函数详解
- python基于Pandas读写MySQL数据库
- pandas读取excel时获取读取进度的实现
- pandas中.loc和.iloc以及.at和.iat的区别说明
- 浅谈Pandas dataframe数据处理方法的速度比较
- 解决使用pandas聚类时的小坑
- pandas 使用merge实现百倍加速的操作
- 详细介绍在pandas中创建category类型数据的几种方法
- python中pandas.read_csv()函数的深入讲解
- pandas 颠倒列顺序的两种解决方案
- pandas快速处理Excel,替换Nan,转字典的操作
- Python基础之教你怎么在M1系统上使用pandas