主页 > 知识库 > python 多进程和多线程使用详解

python 多进程和多线程使用详解

热门标签:呼叫中心市场需求 语音系统 硅谷的囚徒呼叫中心 百度AI接口 Win7旗舰版 客户服务 企业做大做强 电话运营中心

进程和线程

进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位;

一个应用程序至少包含一个进程,一个进程至少包含一个线程;

每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的;

  • 计算机的核心是CPU,它承担了所有的计算任务。它就像一座工厂,时刻在运行。
  • 假定工厂的电力有限,一次只能供给一个车间使用。也就是说,一个车间开工的时候,其他车间都必须停工。背后的含义就是,单个CPU一次只能运行一个任务。编者注: 多核的CPU就像有了多个发电厂,使多工厂(多进程)实现可能。
  • 进程就好比工厂的车间,它代表CPU所能处理的单个任务。任一时刻,CPU总是运行一个进程,其他进程处于非运行状态。
  • 一个车间里,可以有很多工人。他们协同完成一个任务。
  • 线程就好比车间里的工人。一个进程可以包括多个线程。
  • 车间的空间是工人们共享的,比如许多房间是每个工人都可以进出的。这象征一个进程的内存空间是共享的,每个线程都可以使用这些共享内存。
  • 可是,每间房间的大小不同,有些房间最多只能容纳一个人,比如厕所。里面有人的时候,其他人就不能进去了。这代表一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。
  • 一个防止他人进入的简单方法,就是门口加一把锁。先到的人锁上门,后到的人看到上锁,就在门口排队,等锁打开再进去。这就叫"互斥锁"(Mutual exclusion,缩写 Mutex),防止多个线程同时读写某一块内存区域。
  • 还有些房间,可以同时容纳n个人,比如厨房。也就是说,如果人数大于n,多出来的人只能在外面等着。这好比某些内存区域,只能供给固定数目的线程使用。
  • 这时的解决方法,就是在门口挂n把钥匙。进去的人就取一把钥匙,出来时再把钥匙挂回原处。后到的人发现钥匙架空了,就知道必须在门口排队等着了。这种做法叫做"信号量"(Semaphore),用来保证多个线程不会互相冲突。
  • 不难看出,mutex是semaphore的一种特殊情况(n=1时)。也就是说,完全可以用后者替代前者。但是,因为mutex较为简单,且效率高,所以在必须保证资源独占的情况下,还是采用这种设计。

Python的多进程

Python的多进程依赖于multiprocess模块;使用多进程可以利用多个CPU进行并行计算;

实例:

from multiprocessing import Process
import os
import time
 
def long_time_task(i):
    print('子进程: {} - 任务{}'.format(os.getpid(), i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))
 
if __name__=='__main__':
    print('当前母进程: {}'.format(os.getpid()))
    start = time.time()
    p1 = Process(target=long_time_task, args=(1,))
    p2 = Process(target=long_time_task, args=(2,))
    print('等待所有子进程完成。')
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    end = time.time()
    print("总共用时{}秒".format((end - start)))

新创建进程和进程间切换是需要消耗资源的,所以应该控制进程数量;

同时可运行的进程数量收到CPU核数限制;

进程池

使用进程池pool创建进程:

使用进程池可以避免手工进行进程的创建的麻烦,默认数量是CPU核数;

Pool类可以提供指定数量的进程供用户使用,当有新的请求被提交到Pool中的时候,如果进程池还没有满,就会创建一个新的进程来执行请求;如果池已经满了,请求就会等待,等到有空闲进程可以使用时,才会执行请求;

几个方法:

1.apply_async

作用是向进程池提交需要执行的函数和参数,各个进程采用非阻塞的异步方式调用,每个进程只管自己运行,是默认方式;

2.map

会阻塞进程直到返回结果;

3.map_sunc

非阻塞进程;

4.close

关闭进程池,不再接受任务;

5.terminate

结束进程;

6.join

主进程阻塞,直到子进程执行结束;

实例:

from multiprocessing import Pool, cpu_count
import os
import time
 
def long_time_task(i):
    print('子进程: {} - 任务{}'.format(os.getpid(), i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))
 
if __name__=='__main__':
    print("CPU内核数:{}".format(cpu_count()))
    print('当前母进程: {}'.format(os.getpid()))
    start = time.time()
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('等待所有子进程完成。')
    p.close()
    p.join()
    end = time.time()
    print("总共用时{}秒".format((end - start)))

在join之前,必须使用close或者terminate,让进程池不再接受任务;

多进程间的数据通信与共享

通常,进程之间是相互独立的,每个进程都有独立的内存。通过共享内存(nmap模块),进程之间可以共享对象,使多个进程可以访问同一个变量(地址相同,变量名可能不同)。多进程共享资源必然会导致进程间相互竞争,所以应该尽最大可能防止使用共享状态。还有一种方式就是使用队列queue来实现不同进程间的通信或数据共享,这一点和多线程编程类似。

下例这段代码中中创建了2个独立进程,一个负责写(pw), 一个负责读(pr), 实现了共享一个队列queue。

from multiprocessing import Process, Queue
import os, time, random
 
# 写数据进程执行的代码:
def write(q):
    print('Process to write: {}'.format(os.getpid()))
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())
 
# 读数据进程执行的代码:
def read(q):
    print('Process to read:{}'.format(os.getpid()))
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)
 
if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

Python的多线程

python 3中的多进程编程主要依靠threading模块。创建新线程与创建新进程的方法非常类似。threading.Thread方法可以接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新线程,调用start()方法即可让其开始。我们还可以使用current_thread().name打印出当前线程的名字。 

import threading
import time
 
def long_time_task(i):
    print('当前子线程: {} 任务{}'.format(threading.current_thread().name, i))
    time.sleep(2)
    print("结果: {}".format(8 ** 20))
 
if __name__=='__main__':
    start = time.time()
    print('这是主线程:{}'.format(threading.current_thread().name))
    thread_list = []
    for i in range(1, 3):
        t = threading.Thread(target=long_time_task, args=(i, ))
        thread_list.append(t)
    for t in thread_list:
        t.start()
    for t in thread_list:
        t.join()
    end = time.time()
    print("总共用时{}秒".format((end - start)))

多线程间的数据共享

一个进程所含的不同线程间共享内存,这就意味着任何一个变量都可以被任何一个线程修改,因此线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。如果不同线程间有共享的变量,其中一个方法就是在修改前给其上一把锁lock,确保一次只有一个线程能修改它。threading.lock()方法可以轻易实现对一个共享变量的锁定,修改完后release供其它线程使用。

import threading
 
class Account:
    def __init__(self):
        self.balance = 0
 
    def add(self, lock):
        # 获得锁
        lock.acquire()
        for i in range(0, 100000):
            self.balance += 1
        # 释放锁
        lock.release()
 
    def delete(self, lock):
        # 获得锁
        lock.acquire()
        for i in range(0, 100000):
            self.balance -= 1
            # 释放锁
        lock.release()
 
if __name__ == "__main__":
    account = Account()
    lock = threading.Lock()
    # 创建线程
   thread_add = threading.Thread(target=account.add, args=(lock,), name='Add')
    thread_delete = threading.Thread(target=account.delete, args=(lock,), name='Delete')
 
    # 启动线程
   thread_add.start()
    thread_delete.start()
 
    # 等待线程结束
   thread_add.join()
    thread_delete.join()
 
    print('The final balance is: {}'.format(account.balance))

使用queue队列通信-经典的生产者和消费者模型

from queue import Queue
import random, threading, time
 
# 生产者类
class Producer(threading.Thread):
    def __init__(self, name, queue):
        threading.Thread.__init__(self, name=name)
        self.queue = queue
 
    def run(self):
        for i in range(1, 5):
            print("{} is producing {} to the queue!".format(self.getName(), i))
            self.queue.put(i)
            time.sleep(random.randrange(10) / 5)
        print("%s finished!" % self.getName())
 
# 消费者类
class Consumer(threading.Thread):
    def __init__(self, name, queue):
        threading.Thread.__init__(self, name=name)
        self.queue = queue
 
    def run(self):
        for i in range(1, 5):
            val = self.queue.get()
            print("{} is consuming {} in the queue.".format(self.getName(), val))
            time.sleep(random.randrange(10))
        print("%s finished!" % self.getName())
 
def main():
    queue = Queue()
    producer = Producer('Producer', queue)
    consumer = Consumer('Consumer', queue)
 
    producer.start()
    consumer.start()
 
    producer.join()
    consumer.join()
    print('All threads finished!')
 
if __name__ == '__main__':
    main()
  • 对CPU密集型代码(比如循环计算) - 多进程效率更高
  • 对IO密集型代码(比如文件操作,网络爬虫) - 多线程效率更高。

对于IO密集型操作,大部分消耗时间其实是等待时间,在等待时间中CPU是不需要工作的,那你在此期间提供双CPU资源也是利用不上的,相反对于CPU密集型代码,2个CPU干活肯定比一个CPU快很多。那么为什么多线程会对IO密集型代码有用呢?这时因为python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。

以上就是python 多进程和多线程使用详解的详细内容,更多关于python 多进程和多线程的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
  • Python多进程的使用详情
  • Python多线程与多进程相关知识总结
  • python实现多进程并发控制Semaphore与互斥锁LOCK
  • python 实现多进程日志轮转ConcurrentLogHandler
  • Python 多进程原理及实现
  • python多进程基础详解

标签:安康 海南 济南 长沙 崇左 山西 山西 喀什

巨人网络通讯声明:本文标题《python 多进程和多线程使用详解》,本文关键词  ;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 收缩
    • 微信客服
    • 微信二维码
    • 电话咨询

    • 400-1100-266