主页 > 知识库 > Python三十行代码实现简单人脸识别的示例代码

Python三十行代码实现简单人脸识别的示例代码

热门标签:工厂智能电话机器人 江苏客服外呼系统厂家 千阳自动外呼系统 西藏智能外呼系统五星服务 在哪里办理400电话号码 清远360地图标注方法 400电话申请服务商选什么 平顶山外呼系统免费 原装电话机器人

一、库介绍

opencv,face_recognition,numpy,以及dlib

注意:
安装opencv速度可能过慢,需要更换国内镜像源,参考:https://www.jb51.net/article/208359.htm
附带Python3.7,64位版本 dlib whl下载路径:dlib-19_jb51.rar

二、库安装

pip install opencv-python
pip install face_recognition
pip install numpy

dlib库需进入whl文件路径下安装

pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl

三、face_recognition库简单介绍

face_recognition的load_image_file方法会加载图片,并返回一个ndarray类型的数据

face_path = "C://Users//25103//Desktop//Python人脸识别//face//徐先生.jpg"
image = face_recognition.load_image_file(face_path)

face_recognition的face_encoding方法,可从返回的ndarray类型数据中提取人脸特征,可同时提取多个特征,返回值为列表类型

face_encoding = face_recognition.face_encodings(image)[0]

face_recognition的face_location方法可以获取图片中所有人脸的位置,其返回值为一个列表

face_locations = face_recognition.face_locations(rgb_frame)

四、代码实现以及注释讲解

# coding = utf-8
import dlib
import cv2
import face_recognition
import os

# 创建视频对象
video_capture = cv2.VideoCapture(0)

# 加载需要识别的人脸图片(这张图片需要仅有一张脸)
# face_recognition的load_image_file方法会加载图片,并返回一个ndarray类型的数据
# ndarray类型就是NumPy的数组类型,其中的元素类型可以一致也可以不一致
face_path = "C://Users//25103//Desktop//Python人脸识别//face//徐先生.jpg"
image = face_recognition.load_image_file(face_path)

# face_recognition的face_encoding方法,可从返回的ndarray类型数据中提取人脸特征,可同时提取多个特征,返回值为列表类型
# 因为照片中只有一个人脸,所以我们取列表的第一个值
face_encoding = face_recognition.face_encodings(image)[0]

while True:
 # 从视频对象中读取一帧照片
 ret,frame = video_capture.read()
 # 将照片缩小,加快处理速度,这里将其缩小为原图的1/4
 # frame = cv2.rectangle(frame,(0,0),fx=0.25,fy=0.25)
 # 因为cv2用的是BGR色彩,我们组要将其转化为RGB进行处理
 rgb_frame = frame[:,:,::-1] # 列表转置操作

 # face_recognition的face_location方法可以获取图片中所有人脸的位置,其返回值为一个列表
 face_locations = face_recognition.face_locations(rgb_frame)
 print("共从视频中找到了{}张人脸".format(len(face_locations)))

 # 获取视频中所有人脸的特征
 face_encodings = face_recognition.face_encodings(rgb_frame,face_locations)

 for face in face_encodings:
 # 比较两个特征值——encoding1与encoding2,匹配返回True,否则返回False。tolerance越低,顾名思义,容错率越低,返回值为列表类型
 match = face_recognition.compare_faces([face_encoding],face,tolerance=0.4)
 name = "不认识的人"

 if match[0]:
  # face为图片名称
  name = os.path.basename(face_path[0:-4])
 print("找到了{}".format(name))

到此这篇关于Python三十行代码实现简单人脸识别的示例代码的文章就介绍到这了,更多相关Python 简单人脸识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • python opencv人脸识别考勤系统的完整源码
  • 10分钟学会使用python实现人脸识别(附源码)
  • 用Python实现简单的人脸识别功能步骤详解
  • python基于opencv实现人脸识别
  • python实现图片,视频人脸识别(dlib版)
  • python实现图片,视频人脸识别(opencv版)
  • python调用百度API实现人脸识别
  • 使用python-cv2实现Harr+Adaboost人脸识别的示例
  • python3.8动态人脸识别的实现示例
  • Python3 利用face_recognition实现人脸识别的方法
  • python实现的人脸识别打卡系统

标签:锦州 白城 西安 安庆 股票 日照 天水 随州

巨人网络通讯声明:本文标题《Python三十行代码实现简单人脸识别的示例代码》,本文关键词  Python,三十,行,代码,实现,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Python三十行代码实现简单人脸识别的示例代码》相关的同类信息!
  • 本页收集关于Python三十行代码实现简单人脸识别的示例代码的相关信息资讯供网民参考!
  • 推荐文章