主页 > 知识库 > python opencv 找出图像中的最大轮廓并填充(生成mask)

python opencv 找出图像中的最大轮廓并填充(生成mask)

热门标签:电销机器人 金伦通信 郑州智能外呼系统中心 宾馆能在百度地图标注吗 北京外呼电销机器人招商 crm电销机器人 南京crm外呼系统排名 400电话 申请 条件 云南地图标注 汕头电商外呼系统供应商

本文主要介绍了python opencv 找出图像中的最大轮廓并填充,分享给大家,具体如下:

import cv2
import numpy as np
from PIL import Image
 
from joblib import Parallel
from joblib import delayed
# Parallel 和 delayed是为了使用多线程处理
# 使用前需要安装joblib:pip install joblib
 
# img_stack的shape为:num, h, w
# 是三维的图像,可以理解为是num张二维的图像组成
# mask是用来保存最后的结果的
mask = np.ones_like(img_stack)
for i in range(num):
  # 阈值化
  _, binaryzation = cv2.threshold(img_stack[i], 5, 255, cv2.THRESH_BINARY_INV)
  # 找到所有的轮廓
  contours, _ = cv2.findContours(binaryzation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  area = []
  # 找到最大的轮廓
  for k in range(len(contours)):
    area.append(cv2.contourArea(contours[k]))
  max_idx = np.argmax(np.array(area))
  # cv2.fillContexPoly(mask[i], contours[max_idx], 0)
  # 填充最大的轮廓
  cv2.drawContours(mask[i], contours, max_idx, 0, cv2.FILLED)
  del area 
 
 
# 保存
def _write_mask(mask, i):
  Image.fromarray(mask.astype(np.uint8)*255).save(os.path.join(path, 'm%d.png' % i))
 
# 使用多线程进行保存
num_cores = 10
parallel = Parallel(n_jobs=num_cores, backend='threading')
parallel(delayed(_write_mask)(mask[i, :, :], i) for i in range(0, num))

之前偷懒直接将项目里面的代码段扣下来放在这里,误导了大家,抱歉

这次我重新放一个完整版本,希望对大家有所帮助~~

代码在python 3.7.6 和opencv-python 4.3.0下测试成功

import cv2
import numpy as np
 
# 以灰度方式读取图像
img = cv2.imread('img.png', cv2.IMREAD_GRAYSCALE)
mask = img.copy()
 
# 二值化,100为阈值,小于100的变为255,大于100的变为0
# 也可以根据自己的要求,改变参数:
# cv2.THRESH_BINARY
# cv2.THRESH_BINARY_INV
# cv2.THRESH_TRUNC
# cv2.THRESH_TOZERO_INV
# cv2.THRESH_TOZERO
_, binaryzation = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY_INV)
 
# 找到所有的轮廓
contours, _ = cv2.findContours(binaryzation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 
area = []
 
# 找到最大的轮廓
for k in range(len(contours)):
	area.append(cv2.contourArea(contours[k]))
max_idx = np.argmax(np.array(area))
 
# 填充最大的轮廓
mask = cv2.drawContours(mask, contours, max_idx, 0, cv2.FILLED)
 
# 保存填充后的图像
cv2.imwrite('masked.png', mask)

输入图像:

输出图像:

到此这篇关于python opencv 找出图像中的最大轮廓并填充(生成mask)的文章就介绍到这了,更多相关opencv最大轮廓内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python-OpenCV实现图像缺陷检测的实例
  • OpenCV-Python实现图像平滑处理操作
  • OpenCV-Python直方图均衡化实现图像去雾
  • Python OpenCV 图像平移的实现示例
  • python基于opencv 实现图像时钟
  • Python-OpenCV教程之图像的位运算详解

标签:昆明 怀化 石家庄 西宁 梅州 浙江 锡林郭勒盟 文山

巨人网络通讯声明:本文标题《python opencv 找出图像中的最大轮廓并填充(生成mask)》,本文关键词  python,opencv,找出,图像,中的,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《python opencv 找出图像中的最大轮廓并填充(生成mask)》相关的同类信息!
  • 本页收集关于python opencv 找出图像中的最大轮廓并填充(生成mask)的相关信息资讯供网民参考!
  • 推荐文章