主页 > 知识库 > opencv函数threshold、adaptiveThreshold、Otsu二值化的实现

opencv函数threshold、adaptiveThreshold、Otsu二值化的实现

热门标签:crm电销机器人 电销机器人 金伦通信 南京crm外呼系统排名 北京外呼电销机器人招商 宾馆能在百度地图标注吗 郑州智能外呼系统中心 400电话 申请 条件 云南地图标注 汕头电商外呼系统供应商

threshold:固定阈值二值化,

ret, dst = cv2.threshold(src, thresh, maxval, type)
  • src: 输入图,只能输入单通道图像,通常来说为灰度图
  • dst: 输出图
  • thresh: 阈值
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

官方文档的示例代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('gradient.png',0)
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in xrange(6):
  plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
  plt.title(titles[i])
  plt.xticks([]),plt.yticks([])
plt.show()

结果为:

 

adaptiveThreshold:自适应阈值二值化

自适应阈值二值化函数根据图片一小块区域的值来计算对应区域的阈值,从而得到也许更为合适的图片。

dst = cv2.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)
  • src: 输入图,只能输入单通道图像,通常来说为灰度图
  • dst: 输出图
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • thresh_type: 阈值的计算方法,包含以下2种类型:cv2.ADAPTIVE_THRESH_MEAN_C; cv2.ADAPTIVE_THRESH_GAUSSIAN_C.
  • type:二值化操作的类型,与固定阈值函数相同,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV.
  • Block Size: 图片中分块的大小
  • C :阈值计算方法中的常数项

官方文档的示例代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('sudoku.png',0)
img = cv2.medianBlur(img,5)
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\

      cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\

      cv2.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)',
      'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in xrange(4):
  plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
  plt.title(titles[i])
  plt.xticks([]),plt.yticks([])
plt.show()

结果为:

 

Otsu's Binarization: 基于直方图的二值化

Otsu's Binarization是一种基于直方图的二值化方法,它需要和threshold函数配合使用。

Otsu过程:
1. 计算图像直方图;
2. 设定一阈值,把直方图强度大于阈值的像素分成一组,把小于阈值的像素分成另外一组;
3. 分别计算两组内的偏移数,并把偏移数相加;
4. 把0~255依照顺序多为阈值,重复1-3的步骤,直到得到最小偏移数,其所对应的值即为结果阈值。

官方文档的示例代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('noisy2.png',0)
# global thresholding
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th1,
     img, 0, th2,
     blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
     'Original Noisy Image','Histogram',"Otsu's Thresholding",
     'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
for i in xrange(3):
  plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
  plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
  plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
  plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
  plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
  plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

结果为:

 

参考文献:http://docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html

到此这篇关于opencv函数threshold、adaptiveThreshold、Otsu二值化的实现的文章就介绍到这了,更多相关opencv threshold、adaptiveThreshold、Otsu内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • OpenCV 使用imread()函数读取图片的六种正确姿势
  • python+opencv边缘提取与各函数参数解析
  • 详解opencv中画圆circle函数和椭圆ellipse函数
  • 使用OpenCV circle函数图像上画圆的示例代码
  • Python OpenCV 使用滑动条来调整函数参数的方法
  • Opencv2.4.9函数HoughLinesP分析
  • OpenCV中的cv::Mat函数将数据写入txt文件

标签:怀化 昆明 西宁 梅州 文山 石家庄 浙江 锡林郭勒盟

巨人网络通讯声明:本文标题《opencv函数threshold、adaptiveThreshold、Otsu二值化的实现》,本文关键词  opencv,函数,threshold,adaptiveThreshold,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《opencv函数threshold、adaptiveThreshold、Otsu二值化的实现》相关的同类信息!
  • 本页收集关于opencv函数threshold、adaptiveThreshold、Otsu二值化的实现的相关信息资讯供网民参考!
  • 推荐文章