主页 > 知识库 > PyTorch 多GPU下模型的保存与加载(踩坑笔记)

PyTorch 多GPU下模型的保存与加载(踩坑笔记)

热门标签:郑州智能外呼系统中心 宾馆能在百度地图标注吗 电销机器人 金伦通信 南京crm外呼系统排名 crm电销机器人 云南地图标注 400电话 申请 条件 汕头电商外呼系统供应商 北京外呼电销机器人招商

这几天在一机多卡的环境下,用pytorch训练模型,遇到很多问题。现总结一个实用的做实验方式:

多GPU下训练,创建模型代码通常如下:

os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
model = MyModel(args)
if torch.cuda.is_available() and args.use_gpu:
  model = torch.nn.DataParallel(model).cuda()

官方建议的模型保存方式,只保存参数:

torch.save(model.module.state_dict(), "model.pkl")

其实,这样很麻烦,我建议直接保存模型(参数+图):

torch.save(model, "model.pkl")

这样做很实用,特别是我们需要反复建模和调试的时候。这种情况下模型的加载很方便,因为模型的图已经和参数保存在一起,我们不需要根据不同的模型设置相应的超参,更换对应的网络结构,如下:

 if not (args.pretrained_model_path is None):
    print('load model from %s ...' % args.pretrained_model_path)
    model = torch.load(args.pretrained_model_path)
    print('success!')

但是需要注意,这种方式加载的是多GPU下模型。如果服务器环境变化不大,或者和训练时候是同一个GPU环境,就不会出现问题。

如果系统环境发生了变化,或者,我们只想加载模型参数,亦或是遇到下面的问题:

AttributeError: 'model' object has no attribute 'copy'

或者

AttributeError: 'DataParallel' object has no attribute 'copy'

或者

RuntimeError: module must have its parameters and buffers on device cuda:0 (device_ids[0]) but found

这时候我们可以用下面的方式载入模型,先建立模型,然后加载参数。

os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
# 建立模型
model = MyModel(args)

if torch.cuda.is_available() and args.use_gpu:
  model = torch.nn.DataParallel(model).cuda()

if not (args.pretrained_model_path is None):
  print('load model from %s ...' % args.pretrained_model_path)
  # 获得模型参数
  model_dict = torch.load(args.pretrained_model_path).module.state_dict()
  # 载入参数
  model.module.load_state_dict(model_dict)
  print('success!')

到此这篇关于PyTorch 多GPU下模型的保存与加载(踩坑笔记)的文章就介绍到这了,更多相关PyTorch 多GPU下模型的保存与加载内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • 基于pytorch的保存和加载模型参数的方法
  • Pytorch之保存读取模型实例
  • pytorch模型的保存和加载、checkpoint操作

标签:西宁 浙江 怀化 梅州 昆明 文山 石家庄 锡林郭勒盟

巨人网络通讯声明:本文标题《PyTorch 多GPU下模型的保存与加载(踩坑笔记)》,本文关键词  PyTorch,多,GPU,下,模型,的,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《PyTorch 多GPU下模型的保存与加载(踩坑笔记)》相关的同类信息!
  • 本页收集关于PyTorch 多GPU下模型的保存与加载(踩坑笔记)的相关信息资讯供网民参考!
  • 推荐文章