import numpy as np
class Rnn():
def __init__(self, input_size, hidden_size, num_layers, bidirectional=False):
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
def feed(self, x):
'''
:param x: [seq, batch_size, embedding]
:return: out, hidden
'''
# x.shape [sep, batch, feature]
# hidden.shape [hidden_size, batch]
# Whh0.shape [hidden_size, hidden_size] Wih0.shape [hidden_size, feature]
# Whh1.shape [hidden_size, hidden_size] Wih1.size [hidden_size, hidden_size]
out = []
x, hidden = np.array(x), [np.zeros((self.hidden_size, x.shape[1])) for i in range(self.num_layers)]
Wih = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(1, self.num_layers)]
Wih.insert(0, np.random.random((self.hidden_size, x.shape[2])))
Whh = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(self.num_layers)]
time = x.shape[0]
for i in range(time):
hidden[0] = np.tanh((np.dot(Wih[0], np.transpose(x[i, ...], (1, 0))) +
np.dot(Whh[0], hidden[0])
))
for i in range(1, self.num_layers):
hidden[i] = np.tanh((np.dot(Wih[i], hidden[i-1]) +
np.dot(Whh[i], hidden[i])
))
out.append(hidden[self.num_layers-1])
return np.array(out), np.array(hidden)
def sigmoid(x):
return 1.0/(1.0 + 1.0/np.exp(x))
if __name__ == '__main__':
rnn = Rnn(1, 5, 4)
input = np.random.random((6, 2, 1))
out, h = rnn.feed(input)
print(f'seq is {input.shape[0]}, batch_size is {input.shape[1]} ', 'out.shape ', out.shape, ' h.shape ', h.shape)
# print(sigmoid(np.random.random((2, 3))))
#
# element-wise multiplication
# print(np.array([1, 2])*np.array([2, 1]))
到此这篇关于numpy实现RNN原理实现的文章就介绍到这了,更多相关numpy实现RNN内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!