主页 > 知识库 > Python实现曲线拟合的最小二乘法

Python实现曲线拟合的最小二乘法

热门标签:申请办个400电话号码 柳州正规电销机器人收费 千呼ai电话机器人免费 腾讯地图标注有什么版本 镇江人工外呼系统供应商 外呼系统前面有录音播放吗 高德地图标注字母 深圳网络外呼系统代理商 400电话办理费用收费

本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下

模块导入

import numpy as np
import gaosi as gs

代码

"""
本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。

"""
import numpy as np
import gaosi as gs

shape = int(input('请输入拟合函数的次数:'))

x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])
y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2])
data = []
for i in range(shape*2+1):
 if i != 0:
 data.append(np.sum(x**i))
 else:
 data.append(len(x))
b = []
for i in range(shape+1):
 if i != 0:
 b.append(np.sum(y*x**i))
 else:
 b.append(np.sum(y))
b = np.array(b).reshape(shape+1,1)
n = np.zeros([shape+1,shape+1])
for i in range(shape+1):
 for j in range(shape+1):
 n[i][j] = data[i+j]
result = gs.Handle(n,b)
if not result:
 print('增广矩阵求解失败!')
 exit()
fun='f(x) = '
for i in range(len(result)):
 if type(result[i]) == type(''):
 print('存在自由变量!')
 fun = fun + str(result[i])
 elif i == 0:
 fun = fun + '{:.3f}'.format(result[i])
 else:
 fun = fun + '+{0:.3f}*x^{1}'.format(result[i],i)
print('求得{0}次拟合函数为:'.format(shape))
print(fun)

高斯模块

# 导入 numpy 模块
import numpy as np


# 行交换
def swap_row(matrix, i, j):
 m, n = matrix.shape
 if i >= m or j >= m:
 print('错误! : 行交换超出范围 ...')
 else:
 matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy()
 return matrix


# 变成阶梯矩阵
def matrix_change(matrix):
 m, n = matrix.shape
 main_factor = []
 main_col = main_row = 0
 while main_row  m and main_col  n:
 # 选择进行下一次主元查找的列
 main_row = len(main_factor)
 # 寻找列中非零的元素
 not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0]
 # 如果该列向下全部数据为零,则直接跳过列
 if len(not_zeros) == 0:
 main_col += 1
 continue
 else:
 # 将主元列号保存在列表中
 main_factor.append(main_col)
 # 将第一个非零行交换至最前
 if not_zeros[0] != [0]:
 matrix = swap_row(matrix,main_row,main_row+not_zeros[0])
 # 将该列主元下方所有元素变为零
 if main_row  m-1:
 for k in range(main_row+1,m):
 a = float(matrix[k, main_col] / matrix[main_row, main_col])
 matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_row, main_col]
 main_col += 1
 return matrix,main_factor


# 回代求解
def back_solve(matrix, main_factor):
 # 判断是否有解
 if len(main_factor) == 0:
 print('主元错误,无主元! ...')
 return None
 m, n = matrix.shape
 if main_factor[-1] == n - 1:
 print('无解! ...')
 return None
 # 把所有的主元元素上方的元素变成0
 for i in range(len(main_factor) - 1, -1, -1):
 factor = matrix[i, main_factor[i]]
 matrix[i] = matrix[i] / float(factor)
 for j in range(i):
 times = matrix[j, main_factor[i]]
 matrix[j] = matrix[j] - float(times) * matrix[i]
 # 先看看结果对不对
 return matrix


# 结果打印
def print_result(matrix, main_factor):
 if matrix is None:
 print('阶梯矩阵为空! ...')
 return None
 m, n = matrix.shape
 result = [''] * (n - 1)
 main_factor = list(main_factor)
 for i in range(n - 1):
 # 如果不是主元列,则为自由变量
 if i not in main_factor:
 result[i] = '(free var)'
 # 否则是主元变量,从对应的行,将主元变量表示成非主元变量的线性组合
 else:
 # row_of_main表示该主元所在的行
 row_of_main = main_factor.index(i)
 result[i] = matrix[row_of_main, -1]
 return result


# 得到简化的阶梯矩阵和主元列
def Handle(matrix_a, matrix_b):
 # 拼接成增广矩阵
 matrix_01 = np.hstack([matrix_a, matrix_b])
 matrix_01, main_factor = matrix_change(matrix_01)
 matrix_01 = back_solve(matrix_01, main_factor)
 result = print_result(matrix_01, main_factor)
 return result


if __name__ == '__main__':
 a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)
 b = np.array([[4],[6],[5]],dtype=float)
 a = Handle(a, b)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
  • python中最小二乘法详细讲解
  • 最小二乘法及其python实现详解
  • python实现最小二乘法线性拟合
  • Python最小二乘法矩阵
  • Python 普通最小二乘法(OLS)进行多项式拟合的方法
  • Python基于最小二乘法实现曲线拟合示例
  • Python中实现最小二乘法思路及实现代码
  • python中matplotlib实现最小二乘法拟合的过程详解
  • 利用Python实现最小二乘法与梯度下降算法

标签:大庆 郴州 乌兰察布 哈尔滨 平顶山 海南 合肥 乌兰察布

巨人网络通讯声明:本文标题《Python实现曲线拟合的最小二乘法》,本文关键词  Python,实现,曲线,拟合,的,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《Python实现曲线拟合的最小二乘法》相关的同类信息!
  • 本页收集关于Python实现曲线拟合的最小二乘法的相关信息资讯供网民参考!
  • 推荐文章