目录
- 01 如何收集慢查询?
- 02 system.profile慢查询集合分析
- 03 慢查询分析利器---explain
在MongoDB中,如果发生了慢查询,我们如何得到这些慢查询的语句,并优化呢?今天来看这块儿的一些心得。
01 如何收集慢查询?
在MongoDB中,通常可以开启profile来收集慢日志,查看当前profile状态的语句如下:
test1:PRIMARY> db.getProfilingStatus()
{
"was" : 2,
"slowms" : 0,
"sampleRate" : 1,
"$gleStats" : {
"lastOpTime" : Timestamp(0, 0),
"electionId" : ObjectId("7fffffff0000000000000005")
},
"lastCommittedOpTime" : Timestamp(1619186976, 2),
"$configServerState" : {
"opTime" : {
"ts" : Timestamp(1619186976, 1),
"t" : NumberLong(2)
}
},
"$clusterTime" : {
"clusterTime" : Timestamp(1619186976, 2),
"signature" : {
"hash" : BinData(0,"zvwFpgc0KFxieMpj7mBPdrOnonI="),
"keyId" : NumberLong("6904838687771590657")
}
},
"operationTime" : Timestamp(1619186976, 2)
}
这里我们可以看到2个关键参数,分别是was和slowms,其中:
was=0,代表不记录任何的语句;
was=1,代表记录执行时间超过slowms的语句
was=2,代表记录所有的语句
slowms代表语句的阈值,单位是ms
上图中的结果代表我们的实例会收集所有的查询语句。profile收集的查询语句结果存放在admin数据库中的system.profile集合中,可以通过下面的方法进行访问:
test1:PRIMARY> use admin
switched to db admin
test1:PRIMARY> db.system.profile.find({'op':'query'},{'op':1,'ns':1,'millis':1,'ts':1})
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:14.815Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.139Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.141Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:15.239Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.155Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.192Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.225Z") }
{ "op" : "query", "ns" : "admin.system.users", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.273Z") }
{ "op" : "query", "ns" : "admin.system.version", "millis" : 0, "ts" : ISODate("2020-08-27T07:22:16.276Z") }
02 system.profile慢查询集合分析
admin数据库中的system.profile是一个固定集合,保存着超过设置的慢查询的结果。我们来看里面的一条慢查询。
利用下面的方法,来拿到一条数据,并对其中的关键字段进行注释说明:
test1:PRIMARY> db.system.profile.findOne({'op':'query'})
{
"op" : "query", # 操作类型
"ns" : "admin.system.users", # 命名空间
"command" : {
"find" : "system.users",
"filter" : {
"_id" : "admin.root" # 过滤的字段
},
"limit" : 1,
"singleBatch" : true,
"lsid" : {
"id" : UUID("a6034f5e-77c1-4b19-9669-60e1253edf4b")
},
"$readPreference" : {
"mode" : "secondaryPreferred"
},
"$db" : "admin"
},
"keysExamined" : 1, # 扫描的索引数
"docsExamined" : 1, # 扫描的行数
"cursorExhausted" : true,
"numYield" : 0,
"nreturned" : 1, # 返回的值的行数
"locks" : {
xxxx # 锁信息
},
"flowControl" : {
},
"storage" : {
},
"responseLength" : 647,
"protocol" : "op_query",
"millis" : 0, # 这个查询的执行时间,因为我们设置的profilestatus是0,因此所有操作都被记录了。
"planSummary" : "IDHACK", # 针对_id进行查询
"execStats" : { # 查询执行状态
"stage" : "IDHACK",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : 0,
"needYield" : 0,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"keysExamined" : 1,
"docsExamined" : 1
},
"ts" : ISODate("2020-08-27T07:22:14.815Z"),
"client" : "xx.xx.xx.xx", # 查询的客户端IP地址
"allUsers" : [ # 所有的用户信息
{
"user" : "root",
"db" : "admin"
}
],
"user" : "root@admin" # 使用的用户信息
}
03 慢查询分析利器---explain
通常情况下,我们可以使用MongoDB的explain语法来分析一个语句的查询性能,包含是否用到索引、扫描行数等信息,explain语法的基本用法:
后置写法
db.system.profile.find({'op':'query'}).explain()
前置写法
db.system.profile.explain().find({'op':'query'})
其中,explain可以放在查询语句的后面或者前面,当然find语法也可以是update、remove、insert
explain语法的输出分为3种不同的详细程度,分别如下:
三种清晰度模式,清晰度越高,则输出的信息越全,默认情况下是queryPlanner:
1、queryPlanner模式(默认)
db.products.explain().count( { quantity: { $gt: 50 } } )
2、executionStats模式
db.products.explain("executionStats").count( { quantity: { $gt: 50 } } )
3、allPlansExecution模式
db.products.explain("allPlansExecution").count( { quantity: { $gt: 50 } } )
其中,allPlansExecution模式输出的信息最多。
下面是一个explain语法的输出内容,查询的SQL如下:
db.getCollection('files').find(
{"cTime":{
"$gte":ISODate("2021-04-18"),
"$lt":ISODate("2021-04-19")
}}).limit(1000).explain("allPlansExecution")
输出的结果如下:
{
"queryPlanner" : { # 代表查询的执行计划
"plannerVersion" : 1, # 版本号
"namespace" : "fs.files", # 查询的命名空间,也就是集合名称
"indexFilterSet" : false, # 是否使用了索引过滤,注意,它并不能判定是否使用了索引
"parsedQuery" : { # 查询语法解析树
"$and" : [
{
"cTime" : {
"$lt" : ISODate("2021-04-19T00:00:00Z")
}
},
{
"cTime" : {
"$gte" : ISODate("2021-04-18T00:00:00Z")
}
}
]
},
"winningPlan" : { # 最终选择的查询计划
"stage" : "LIMIT", # 查询的阶段,很重要,下面详细介绍
"limitAmount" : 1000, # 查询结果的limit值
"inputStage" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN", # 代表索引扫描
"keyPattern" : {
"cTime" : 1
},
"indexName" : "cTime_1", # 索引名称
"isMultiKey" : false, # 下面4个字段都是索引类型分析
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"cTime" : [
"[new Date(1618704000000), new Date(1618790400000))"
]
}
}
}
},
"rejectedPlans" : [ ] # 候选的没被选中的查询计划
},
"serverInfo" : {
"host" : "xxxx",
"port" : 24999,
"version" : "3.2.8",
"gitVersion" : "ed70e33130c977bda0024c125b56d159573dbaf0"
},
"ok" : 1
}
首先解释下stage的几个阶段:
- COLLSCAN---全表扫描
- IXSCAN---索引扫描
- FETCH---根据索引去检索文档
- SHARD_MERGE---合并分片结果
- IDHACK---针对id进行查询
- LIMIT---执行limit
了解了这些stage的阶段之后,我们可以看到,一个查询的过程是一层一层解析的,所以可以看到,stage这个字段有嵌套的情况。winningPlan中的执行计划也是按照一层一层的顺序去执行:
1、先执行最内层的索引扫描(IXSCAN);
2、再执行外面的FETCH,根据索引去拿文档
3、执行最后一步的limit,取指定数目个结果返回给客户端
以上就是MongoDB profile分析慢查询的示例的详细内容,更多关于MongoDB profile分析慢查询的资料请关注脚本之家其它相关文章!
您可能感兴趣的文章:- 深入讲解MongoDB的慢日志查询(profile)