淘汰策略 | 说明 |
---|---|
volatile-lru | 根据 LRU 算法删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
allkeys-lru | 根据 LRU 算法删除所有的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
volatile-lfu | 根据 LFU 算法删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
allkeys-lfu | 根据 LFU 算法删除所有的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
volatile-random | 随机删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
allkeys-random | 随机删除所有键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
volatile-ttl | 根据键值对象的 ttl 属性, 删除最近将要过期数据。 如果没有,则直接报错 |
noeviction | 默认策略,不作任何处理,直接报错 |
PS:淘汰策略也可以直接使用命令 config set maxmemory-policy 策略>
来进行动态配置。
LRU
全称为:Least Recently Used
。即:最近最长时间未被使用。这个主要针对的是使用时间。
Redis 改进后的 LRU 算法
在 Redis
当中,并没有采用传统的 LRU
算法,因为传统的 LRU
算法存在 2
个问题:
key
值使用很频繁,但是最近没被使用,从而被 LRU
算法删除。为了避免以上 2
个问题,Redis
当中对传统的 LRU
算法进行了改造,通过抽样的方式进行删除。
配置文件中提供了一个属性 maxmemory_samples 5
,默认值就是 5
,表示随机抽取 5
个 key
值,然后对这 5
个 key
值按照 LRU
算法进行删除,所以很明显,key
值越大,删除的准确度越高。
对抽样 LRU
算法和传统的 LRU
算法,Redis
官网当中有一个对比图:
左上角第一幅图代表的是传统 LRU
算法,可以看到,当抽样数达到 10
个(右上角),已经和传统的 LRU
算法非常接近了。
Redis 如何管理热度数据
前面我们讲述字符串对象时,提到了 redisObject
对象中存在一个 lru
属性:
typedef struct redisObject { unsigned type:4;//对象类型(4位=0.5字节) unsigned encoding:4;//编码(4位=0.5字节) unsigned lru:LRU_BITS;//记录对象最后一次被应用程序访问的时间(24位=3字节) int refcount;//引用计数。等于0时表示可以被垃圾回收(32位=4字节) void *ptr;//指向底层实际的数据存储结构,如:SDS等(8字节) } robj;
lru
属性是创建对象的时候写入,对象被访问到时也会进行更新。正常人的思路就是最后决定要不要删除某一个键肯定是用当前时间戳减去 lru
,差值最大的就优先被删除。但是 Redis
里面并不是这么做的,Redis
中维护了一个全局属性 lru_clock
,这个属性是通过一个全局函数 serverCron
每隔 100
毫秒执行一次来更新的,记录的是当前 unix
时间戳。
最后决定删除的数据是通过 lru_clock
减去对象的 lru
属性而得出的。那么为什么 Redis
要这么做呢?直接取全局时间不是更准确吗?
这是因为这么做可以避免每次更新对象的 lru
属性的时候可以直接取全局属性,而不需要去调用系统函数来获取系统时间,从而提升效率(Redis
当中有很多这种细节考虑来提升性能,可以说是对性能尽可能的优化到极致)。
不过这里还有一个问题,我们看到,redisObject
对象中的 lru
属性只有 24
位,24
位只能存储 194
天的时间戳大小,一旦超过 194
天之后就会重新从 0
开始计算,所以这时候就可能会出现 redisObject
对象中的 lru
属性大于全局的 lru_clock
属性的情况。
正因为如此,所以计算的时候也需要分为 2
种情况:
lruclock
> lru
,则使用 lruclock
- lru
得到空闲时间。lruclock
lru
,则使用 lruclock_max
(即 194
天) - lru
+ lruclock
得到空闲时间。需要注意的是,这种计算方式并不能保证抽样的数据中一定能删除空闲时间最长的。这是因为首先超过 194
天还不被使用的情况很少,再次只有 lruclock
第 2
轮继续超过 lru
属性时,计算才会出问题。
比如对象 A
记录的 lru
是 1
天,而 lruclock
第二轮都到 10
天了,这时候就会导致计算结果只有 10-1=9
天,实际上应该是 194+10-1=203
天。但是这种情况可以说又是更少发生,所以说这种处理方式是可能存在删除不准确的情况,但是本身这种算法就是一种近似的算法,所以并不会有太大影响。
LFU
全称为:Least Frequently Used
。即:最近最少频率使用,这个主要针对的是使用频率。这个属性也是记录在redisObject
中的 lru
属性内。
当我们采用 LFU
回收策略时,lru
属性的高 16
位用来记录访问时间(last decrement time:ldt,单位为分钟),低 8
位用来记录访问频率(logistic counter:logc),简称 counter
。
访问频次递增
LFU
计数器每个键只有 8
位,它能表示的最大值是 255
,所以 Redis
使用的是一种基于概率的对数器来实现 counter
的递增。r
给定一个旧的访问频次,当一个键被访问时,counter
按以下方式递增:
0
和 1
之间的随机数 R
。counter
- 初始值(默认为 5
),得到一个基础差值,如果这个差值小于 0
,则直接取 0
,为了方便计算,把这个差值记为 baseval
。P
计算公式为:1/(baseval * lfu_log_factor + 1)
。R P
时,频次进行递增(counter++
)。公式中的 lfu_log_factor
称之为对数因子,默认是 10
,可以通过参数来进行控制:
lfu_log_factor 10
下图就是对数因子 lfu_log_factor
和频次 counter
增长的关系图:
可以看到,当对数因子 lfu_log_factor
为 100
时,大概是 10M(1000万)
次访问才会将访问 counter
增长到 255
,而默认的 10
也能支持到 1M(100万)
次访问 counter
才能达到 255
上限,这在大部分场景都是足够满足需求的。
如果访问频次 counter
只是一直在递增,那么迟早会全部都到 255
,也就是说 counter
一直递增不能完全反应一个 key
的热度的,所以当某一个 key
一段时间不被访问之后,counter
也需要对应减少。
counter
的减少速度由参数 lfu-decay-time
进行控制,默认是 1
,单位是分钟。默认值 1
表示:N
分钟内没有访问,counter
就要减 N
。
lfu-decay-time 1
具体算法如下:
16
位(为了方便后续计算,这个值记为 now
)。lru
属性中的高 16
位(为了方便后续计算,这个值记为 ldt
)。lru
> now
时,默认为过了一个周期(16
位,最大 65535
),则取差值 65535-ldt+now
:当 lru
= now
时,取差值 now-ldt
(为了方便后续计算,这个差值记为 idle_time
)。lfu_decay_time
值,然后计算:idle_time / lfu_decay_time
(为了方便后续计算,这个值记为num_periods
)。counter
减少:counter - num_periods
。看起来这么复杂,其实计算公式就是一句话:取出当前的时间戳和对象中的 lru
属性进行对比,计算出当前多久没有被访问到,比如计算得到的结果是 100
分钟没有被访问,然后再去除配置参数 lfu_decay_time
,如果这个配置默认为 1
也即是 100/1=100
,代表 100
分钟没访问,所以 counter
就减少 100
。
本文主要介绍了 Redis
过期键的处理策略,以及当服务器内存不够时 Redis
的 8
种淘汰策略,最后介绍了 Redis
中的两种主要的淘汰算法 LRU
和 LFU
。
到此这篇关于浅谈内存耗尽后Redis会发生什么的文章就介绍到这了,更多相关Redis内存耗尽内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
上一篇:Redis持久化深入详解