抢红包的需求分析
抢红包的场景有点像秒杀,但是要比秒杀简单点。
因为秒杀通常要和库存相关。而抢红包则可以允许有些红包没有被抢到,因为发红包的人不会有损失,没抢完的钱再退回给发红包的人即可。
另外像小米这样的抢购也要比淘宝的要简单,也是因为像小米这样是一个公司的,如果有少量没有抢到,则下次再抢,人工修复下数据是很简单的事。而像淘宝这么多商品,要是每一个都存在着修复数据的风险,那如果出故障了则很麻烦。
基于redis的抢红包方案
下面介绍一种基于Redis的抢红包方案。
把原始的红包称为大红包,拆分后的红包称为小红包。
1.小红包预先生成,插到数据库里,红包对应的用户ID是null。生成算法见另一篇文章:https://www.jb51.net/article/98620.htm
2.每个大红包对应两个redis队列,一个是未消费红包队列,另一个是已消费红包队列。开始时,把未抢的小红包全放到未消费红包队列里。
未消费红包队列里是json字符串,如{userId:'789', money:'300'}。
3.在redis中用一个map来过滤已抢到红包的用户。
4.抢红包时,先判断用户是否抢过红包,如果没有,则从未消费红包队列中取出一个小红包,再push到另一个已消费队列中,最后把用户ID放入去重的map中。
5.用一个单线程批量把已消费队列里的红包取出来,再批量update红包的用户ID到数据库里。
上面的流程是很清楚的,但是在第4步时,如果是用户快速点了两次,或者开了两个浏览器来抢红包,会不会有可能用户抢到了两个红包?
为了解决这个问题,采用了lua脚本方式,让第4步整个过程是原子性地执行。
下面是在redis上执行的Lua脚本:
-- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
-- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
-- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
-- 如果用户已抢过红包,则返回nil
if rediscall('hexists', KEYS[3], KEYS[4]) ~= 0 then
return nil
else
-- 先取出一个小红包
local hongBao = rediscall('rpop', KEYS[1]);
if hongBao then
local x = cjsondecode(hongBao);
-- 加入用户ID信息
x['userId'] = KEYS[4];
local re = cjsonencode(x);
-- 把用户ID放到去重的set里
rediscall('hset', KEYS[3], KEYS[4], KEYS[4]);
-- 把红包放到已消费队列里
rediscall('lpush', KEYS[2], re);
return re;
end
end
return nil
下面是测试代码:
public class TestEval {
static String host = "localhost";
static int honBaoCount = 1_0_0000;
static int threadCount = 20;
static String hongBaoList = "hongBaoList";
static String hongBaoConsumedList = "hongBaoConsumedList";
static String hongBaoConsumedMap = "hongBaoConsumedMap";
static Random random = new Random();
// -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
// -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
// -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
static String tryGetHongBaoScript =
// "local bConsumed = rediscall('hexists', KEYS[3], KEYS[4]);\n"
// + "print('bConsumed:' ,bConsumed);\n"
"if rediscall('hexists', KEYS[3], KEYS[4]) ~= 0 then\n"
+ "return nil\n"
+ "else\n"
+ "local hongBao = rediscall('rpop', KEYS[1]);\n"
// + "print('hongBao:', hongBao);\n"
+ "if hongBao then\n"
+ "local x = cjsondecode(hongBao);\n"
+ "x['userId'] = KEYS[4];\n"
+ "local re = cjsonencode(x);\n"
+ "rediscall('hset', KEYS[3], KEYS[4], KEYS[4]);\n"
+ "rediscall('lpush', KEYS[2], re);\n"
+ "return re;\n"
+ "end\n"
+ "end\n"
+ "return nil";
static StopWatch watch = new StopWatch();
public static void main(String[] args) throws InterruptedException {
// testEval();
generateTestData();
testTryGetHongBao();
}
static public void generateTestData() throws InterruptedException {
Jedis jedis = new Jedis(host);
jedisflushAll();
final CountDownLatch latch = new CountDownLatch(threadCount);
for(int i = 0; i threadCount; ++i) {
final int temp = i;
Thread thread = new Thread() {
public void run() {
Jedis jedis = new Jedis(host);
int per = honBaoCount/threadCount;
JSONObject object = new JSONObject();
for(int j = temp * per; j (temp+1) * per; j++) {
objectput("id", j);
objectput("money", j);
jedislpush(hongBaoList, objecttoJSONString());
}
latchcountDown();
}
};
threadstart();
}
latchawait();
}
static public void testTryGetHongBao() throws InterruptedException {
final CountDownLatch latch = new CountDownLatch(threadCount);
Systemerrprintln("start:" + SystemcurrentTimeMillis()/1000);
watchstart();
for(int i = 0; i threadCount; ++i) {
final int temp = i;
Thread thread = new Thread() {
public void run() {
Jedis jedis = new Jedis(host);
String sha = jedisscriptLoad(tryGetHongBaoScript);
int j = honBaoCount/threadCount * temp;
while(true) {
Object object = jediseval(tryGetHongBaoScript, 4, hongBaoList, hongBaoConsumedList, hongBaoConsumedMap, "" + j);
j++;
if (object != null) {
// Systemoutprintln("get hongBao:" + object);
}else {
//已经取完了
if(jedisllen(hongBaoList) == 0)
break;
}
}
latchcountDown();
}
};
threadstart();
}
latchawait();
watchstop();
Systemerrprintln("time:" + watchgetTotalTimeSeconds());
Systemerrprintln("speed:" + honBaoCount/watchgetTotalTimeSeconds());
Systemerrprintln("end:" + SystemcurrentTimeMillis()/1000);
}
}
测试结果20个线程,每秒可以抢2.5万个,足以应付绝大部分的抢红包场景。
如果是真的应付不了,拆分到几个redis集群里,或者改为批量抢红包,也足够应付。
总结:
redis的抢红包方案,虽然在极端情况下(即redis挂掉)会丢失一秒的数据,但是却是一个扩展性很强,足以应付高并发的抢红包方案。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
您可能感兴趣的文章:- Nginx+Lua+Redis构建高并发Web应用
- Redis实现高并发计数器
- 如何利用Redis锁解决高并发问题详解
- Redis瞬时高并发秒杀方案总结
- PHP实现Redis单据锁以及防止并发重复写入
- jedispool连redis高并发卡死的问题
- 使用lua+redis解决发多张券的并发问题