主页 > 知识库 > 基于大数据思维的呼叫中心量质管理模式探索

基于大数据思维的呼叫中心量质管理模式探索

热门标签:门店申请地图标注注册 北京智能外呼系统厂家 随州销售外呼系统招商 云南地图标注公司 浙江电脑外呼系统产品介绍 地图标注怎么设置logo 电话机器人打电销犯法吗 未来的电话机器人 crm外呼系统拨号电话费多少

一、背景
关于呼叫中心运营质量与效率管理的方法已经日趋成熟,例如PDCA循环”、 六顶思考帽”等方法的运用,而有待进一步思考和探索的是,如何突破传统,寻找呼叫中心运营管理的新思路。笔者所在广东移动客服(广州)中心,拥有超过1800名生产人员,每月服务的客户人次约500万,每次服务均涉及到客户短信满意度、首次问题解决率、通话时长、来电原因等各项运营数据,数据量若以服务人次的倍数增长来衡量,要做到各个指标以及量质的均衡是非常困难的,笔者认为,大数据”思维是与呼叫中心运营特点最契合的新思路之一。

二、探索实践
通话均长是呼叫中心衡量服务效率的常见指标,反映平均每一通客户拨打热线人工的通话时长(单位:秒);短信满意度则是表示客户对热线人工服务满意度比率,是反映客户满意程度最常见的指标;首次问题解决率是客户拨打热线后2小时内未重复拨打的比率,反映10086对客户问题的解决能力。将这三个常见运营管理指标结合起来,能够让运营更加合理、均衡。笔者运用大数据思维,建立量质九宫格”管理模型,就是将量的指标(通话均长)与质的指标(短信满意度和首次问题解决率)结合管理,保质提效。

1.建立模型
建立 量质九宫格” 管理模型,整合所有成熟技能人员超过1000万个数据,将人员按照通话均长(简称ATT”)、质量划分成A/B/C三个等级,组合成9个类型。比如AA型就是质量好、ATT短的员工;那么BA型的就是质量好、ATT稍长的员工;CA型就是质量好、ATT最长的员工。

2.人员配型
结合员工ATT、质量数据,将每一个员工按照模型规则打上类型标签。配型结果显示,处于平均水平的BB型员工占比最高,达24%;质量A型、通话均长A型员工比例分别为30%、20%;双优AA型、双低CC型员工占比均为6%。


3.业务配型
对比类型间业务结构,找到每个群体的员工特点和缺点,以采取针对性管理提升方式。比如,CA与BA型员工对比,他的特点是业务相对熟练、更倾向于主动服务和一站式解决客户问题,他的缺陷就在与语言表达的精简性不足,不能够灵活运营一些辅助手段培育客户自助服务能力。

4.方法配型
每个类型员工均存在不同的问题与特征,那么,接下来我们针对每个类型员工设计不同的提升方案。

5.管理实践
首先采用目标管理的方式,对每个类型设定分解目标,并将目标按照每一个员工历史表现制定员工个人目标值。


然后,我们针对每个员工群体特性,从人员能力、业务能力提升两个方面着手开展工作。


6.实践成效
最终,经过3个月的运营实践,取得了良好的效果:
(1)ATT持续下降、质量持续提升:从9月起,连续3个月ATT下降8秒;同时,质量指标短信满意度、首次问题解决率持续创新高,达96.60%、89.32%,分别提升1.1pp、0.87pp。

(2)九宫格发展趋势良好:短ATT的A型人群数增长至1.5倍、同时优质量A型人群数增长75%。AA型短ATT、优质量人群数增长到2.9倍,CC型长ATT、低质量人群减少至0人,员工ATT最高降50 s、且首次问题解决率提升2.5pp。

三、总结
大数据思维法则:你的用户不是一类人,而是每个人。
在实践中我们给每一个员工设置标签、设置目标和提升方法,运用了大数据思维。但本实践仍属初步探索阶段,很多方面还需优化,也希望持续借鉴和学习各行业及行业内其他呼叫中心的经验,通过不断尝试、改进,精益求精,探索呼叫中心发展新方向。

作者单位为广东移动客户服务(广州)中心;

标签:周口 盘锦 秦皇岛 玉溪 淮北 大理 七台河 临汾

巨人网络通讯声明:本文标题《基于大数据思维的呼叫中心量质管理模式探索》,本文关键词  基于,大,数据,思维,的,呼叫中心,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《基于大数据思维的呼叫中心量质管理模式探索》相关的同类信息!
  • 本页收集关于基于大数据思维的呼叫中心量质管理模式探索的相关信息资讯供网民参考!
  • 推荐文章