主页 > 知识库 > 经典巡线机器人电源系统研究

经典巡线机器人电源系统研究

热门标签:如何向奥维地图添加地图标注 如何使用外呼系统 青兰高速公路地图标注 恩施智能营销电话机器人哪家便宜 外呼系统如何设置标记提示音 南昌营销外呼系统代理 朝阳外呼系统定制化 没有地图标注的公司多吗 400打头的电话申请
1引言   机器人巡线是指用机器人携带检测通信仪器沿 全线路行驶作业,并由机器人完成对线路运行故障的检测和对安全事故隐患的巡视,并将所检测的信息实时向地面传送,由地面进行分析处理。在常规地面运作时,一般采用小型蓄电池定时更换方式。但是,高压输电线路分布在野外,跨越山川湖泊,巡线机器人作业时,能量消耗大,而现场没有可供充电的电源,并且在巡线过程中频繁的更换蓄电池会造成诸多不便,该因素会极大的限制巡线机器人的广泛应用。   为此,本文研究了通过感应取电的方式为机器人提供电源的供电系统。   2 系统结构   为实现上述目的,设计铁芯和线圈从高压线路上获取电能,获取的电能通过开关电源转换为稳流源,并通过充电使能电路向镍氢电池充电,同时,充电控制电路对电池电压监控以控制充电方式、是否充电、是否停机,并将信息传送给巡线机器人主控制系统。   3工作原理   按照电磁场理论,环绕工作状态的高压输电线 路存在着交变磁场,根据电磁感应定律,磁场中的回路将产生感应电流。在近似认为输电线路为无限长的前提下,输电线路所产生的磁场的磁通线为围绕它的同心圆。如,输电线路中的电流为I1,根据安培环路定理可以推出距输电线距离为r的空间任一点磁场强度的大小为: H=I/2 πr(A/m)(1)   磁感应强度为: B=μI/2πr(T)(2)   B的方面与中心位于导线上的圆相切,并垂直 于导线的平面。 如果将机器人等为一个电阻R,则由感应线圈与机器人组成的回路中将产生电流I2,等效图见图1。   图1取电装置电路等效图   机器人电源系统研究的核心内容是如何高效率 地从输电线路四周的磁场能量转换为电能,其中关键部分是铁芯和线圈的设计。   4电源系统的构成   4.1铁芯及线圈   铁芯的特性及身体尺寸对感应装置输出功率的影响很大,如图2所示,高压输电线路可视为只有一匝的初始绕组,按电磁感应定律,R两端的感应电动势的有效值为:   忽略励磁电流,I1与流经R的电流I2满足I1≈ NI2,按感应电流计算,R的功率为:   由式(4)可知,由于受机器人体积的限制,在S一定的情况下,应选择合适的铁芯材料以提高磁感应强度是提高输出功率的途径。 高压输电线路中的电流受负载的影响而不断变化,峰值电流是谷值电流的数百倍。在如此大的变化范围之内,为保证能为机器人连续供电,取电装置必须在较小的电流时便能取得较高的能量,并且随着电流不断增加而增大。对应于铁芯,则要求其应具有较高的初始磁导率及较高的饱和磁感应强度。在目前使用的软磁材料中,由于硅钢片具有较大的饱和磁感应强度及叠片系数,能取得较大的功率,故取其作为铁芯材料。   为了避免磁场损耗,铁芯应是一个整体,以保证磁路中无气隙。但由于高压输电线路无断点,同时,机器人在行进过程中需悬垂子、平衡锤等障碍。铁芯必须设计成可以分合的两部分,在正常工作时两部分合为一体,跨越障碍时需通过机械手将其分开。 图2 铁芯结构示意图   从式(1)、 (2)中同样可知,取电装置所取功率同时受线圈匝数的影响。取能装置若要取得最大能量,则P1及P2应同时达到最大值,此时应满足P1=P2,由此可推出   此时,取电装置能取得最大功率。此关系是在忽略漏磁、气隙、励磁电流的情况下推出的,为了验证其准确性,我们单独对线圈匝数进行了试验。实验时,输电线路电流I1=210A,此时,根据硅钢的磁 化曲线可查得,B≈1.8T,负载等效电阻R=800 Ω,电流频率f=50Hz,理论计算值为N=738。试验数据见表1。   可以看出,在700匝左右时,功率达到最大值,与理论值相近。   4.2充电及控制电路   铁芯和线圈从高压线路上获取的电能通过开关电源转换为稳流源,并通过充电使能电路向镍氢电池充电,同时,充电控制电路对电池电压监控以控制充电方式、是否充电、是否停机,并将信息传送给巡线机器人主控制系统,图3是系统控制流程图。   4.2.1开关电源电路   开关电源中采用半桥变换电路进行降压,如图4所示。为方便说明,场效应管的开关控制用两个开关代替(swdip22),开关S1和S2交替导通,当S1导通时,S2断开,然后反之。稳态条件下,在C1= C2时,S1导通时,C1上的1/2VS加在原边线圈上, 副边绕组电压使D2导通。经占空比所定时间后,S1关断,S2导通,副边绕组电压使D1导通。场效应管的开关控制是由KA7500B芯片9,10,12脚来控制的,控制电路利用变压器耦合,驱动MOSFET,驱动BG3、BG4和BG7、BG8组成了桥式推挽功率放大电路。通过9脚输出高电平时,10脚为低电平,BG4、BG7导通。变压器TF1流过正向电流。变压器TF1一次绕组上的电压为反向,大小为从整流桥过来的总电压的一半,如图5所示。   10脚输出高电平时,9脚为低电平,BG8、BG3 导通。变压器TF1流过反向电流。变压器TF1一 次绕组上的电压为正向,大小同样为从整流桥过来的总电压的一半。   4.2.2充电控制电路   设计的充电电路须在电压至峰值电压时,停止 充电,以防电池过充电;并且在充电快完成时,应使用C/102C/15进行补充充电,以防止由于电池的弱极化。 充电使能电路如图6所示,SR24是继电器,CTL+,CTL-连接到线圈的输出端,78L15为运放提供稳定的15V电源。使能电路的核心是CA3140,本电路不能采用开环比较器电路,因为,镍 氢电池在充电时也要工作,其 dv dt 的特性可能变化很大,ca3140接成schmitt触发器的形式。   图7是充电控制电路,由CA3140组成schmitt 触发器,稳压管的主要作用是稳定输出电压的幅值,为三极管提供合适工作点。R5是保护电阻,起限流作用。两个光隔,分别用于强制快充使能端和快速充电检测,为机器人提供充电信息。   机器人过障时电机提供的功率较大,充电电流可能小于放电电流,为避免电池的过放电而损坏电池,设计的保护电路,如图8所示。   当蓄电池两端电压低于24V时,由于稳压管的 非线性,三级管Q1基极的电位趋于0,Q1反相截止,电流经R5,D2流入光隔D3,产生LOW信号,提示机器人停机充电。当蓄电池电压高于24V时,则Q1导通,电流由R5流入三极管Q1。   机器人需要输出32V,7A;24V,4A;12V,3A;5V,2A四路电压,选用DC/DC模块电源,把电池输 出端的电压转换成以上四种电压。   5结论   本文对机器人电源系统进行了理论分析和实际设计,主要阐述了感应取电装置各参数(铁芯磁性参数、几何尺寸、线圈匝数等)对取电功率的影响,从理论上推出他们之间的关系,根据理论分析结果,进行了相应的试验;同时,对电源系统的控制电路及充电电路工作原理进行详细的介绍。本系统研制,对于高压作业设备的电能供给问题,是一个很好的 解决方案。 更多机器人技术资料,电路图及DIY设计,可参见本期Designs of week——当中国制造遇上机器人技术,设计思维请跟上!

标签:德州 滨州 安康 恩施 益阳 朔州 广安 通化

巨人网络通讯声明:本文标题《经典巡线机器人电源系统研究》,本文关键词  经典,巡线,机器人,电源,;如发现本文内容存在版权问题,烦请提供相关信息告之我们,我们将及时沟通与处理。本站内容系统采集于网络,涉及言论、版权与本站无关。
  • 相关文章
  • 下面列出与本文章《经典巡线机器人电源系统研究》相关的同类信息!
  • 本页收集关于经典巡线机器人电源系统研究的相关信息资讯供网民参考!
  • 推荐文章