天津电销电话卡,办理天津电销电话卡,天津电销电话卡办理
本公司办理全国各地电话销售卡,需要的老板可以联系电话或者微信!!诚心合作!! 已做多年手机卡业务,服务上千上万家电销公司,一站式服务,售后有保障,让客户用着放心!
数据挖掘按照其挖掘任务主要包括分类和预测、聚类分析、关联规则挖掘,回归发现和序列模式发现等技术。在选择某种数据挖掘技术之前,首先要将需要解决的问题转化成正确的数据挖掘任务,然后根据挖掘的任务来选择使用哪些数据挖掘技术。在电子商务活动中,主要使用下面的一些数据挖掘技术。
5.1分类
分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型或分类函数,将数据库中的数据项映射到某个给定的类别。分类的主要方法有基于决策树模型的数据分类,贝叶斯分类算法,ID3算法和基于BP神经网络算法等。
假定现在我们有一个描述顾客属性的数据库,包括他们的姓名、年龄、收入、职业等,我们可以按照他们是否购买某种商品(例如,计算机)来进行分类。如果现在有新的顾客添加到数据库中,我想将新计算机的销售信息通知顾客,若将促销材料分发给数据库中的每个新顾客,如此可能会导致耗费较多的精力和物力。而若我们只给那些可能购买新计算机的顾客分发材料,可以在较大的程度上节省成本。为此,可以构造和使用分类模型。分类方法的特点是通过对示例数据库中的数据进行分析,已经建立了一个分类模型,然后利用分类模型对数据库中的其它记录进行分类。
5.2聚类分析
聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。聚类分析的方法是数据挖掘领域最为常见的技术之一。常用的聚类分析方法有:分割聚类方法,层次聚类方法,基于密度的聚类方法和高维稀疏聚类算法等。聚类分析方法与分类方法的不同之处是聚类事先对数据集的分布没有任何的了解。因此在聚集之后要有一个对业务很熟悉的人来解释这样聚集的意义。很多情况下一次聚集你得到的分类对你的业务来说可能并不好,这时你需要删除或增加变量以影响分类的方式,经过几次反复之后才能最终得到一个理想的结果。聚类分析方法在电子商务中的使用也极其广泛。其中一个典型的应用是帮助市场分析人员从客户基本库中发现不同的客户群,并且用购买模式来刻画不同客户群的特征。通过对聚类的客户特征的提取,把客户群分成更细的市场,提供针对性的服务。